%0 Journal Article
%T 一类分数阶薛定谔-泊松系统非平凡解的存在性
Existence of Nontrivial Solution for a Class of Fractional Schro¨dinger-Poisson System
%A 孟娟霞
%J Advances in Applied Mathematics
%P 1704-1712
%@ 2324-8009
%D 2023
%I Hans Publishing
%R 10.12677/AAM.2023.124177
%X 本文研究一类具有变号权的分数阶薛定谔-泊松系统
非平凡解的存在性, 其中
, s, t∈(0, 1) 且 4s + 2t > 3, a(x)∈C(R3) 变号且lim|x|→∞ a(x) = a∞ < 0,
. 应用山路引理, 本文得到该系统至少存在一个非平凡解.
In this paper, we are concerned with the existence of nontrivial solution for a class of fractional Schro¨dinger-Poisson system:
where
, s, t ∈ (0, 1) and 4s + 2t > 3, a(x) ∈ C(R3) is a sign-changing function with lim|x|→∞ a(x) = a∞ < 0,
. By using mountain pass theorem, we obtain that this system has at least one nontrivial solution.
%K 分数阶薛定谔-泊松系统,变号权,非平凡解
Fractional Schro¨dinger-Poisson System
%K Sign-Changing Weight
%K Nontrivial Solution
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=64649