全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

四阶特征值问题基于降阶格式的一种有效的Legendre-Galerkin逼近
An Efficient Legendre-Galerkin Approximation Based on Reduced Order Scheme for Fourth Order Eigenvalue Problems

DOI: 10.12677/AAM.2023.124203, PP. 1981-1988

Keywords: 四阶特征值问题,降阶格式,Legendre-Galerkin逼近,数值例子
Fourth Order Eigenvalue Problems
, Reduced Order Scheme, Legendre-Galerkin Approximation, Numerical Examples

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文提出了四阶特征值问题基于降阶格式的一种有效的Legendre-Galerkin逼近。首先,我们引入了一个辅助函数,将原问题转化为一个二阶混合格式。通过引入一些适当的Sobolev空间,其相应的变分形式被建立,并在解足够光滑条件下证明了其等价性。其次,基于Legendre多项式的正交性质,两组紧凑的基函数被构造,并导出具有稀疏系数矩阵的线性特征系统。最后,我们给出了两个数值例子,数值结果表明了算法的收敛性与高精度。
In this paper, an efficient Legendre-Galerkin approximation based on reduced order scheme for fourth order eigenvalue problems is presented. First, we introduce an auxiliary function to trans-form the original problem into a second order mixed format. By introducing some suitable Sobolev Spaces, the corresponding variational form is established, and its equivalence is proved if the solu-tion is sufficiently smooth. Secondly, based on the orthogonal property of Legendre polynomials, two groups of compact basis functions are constructed, and a linear characteristic system with sparse coefficients matrix is derived. Finally, we give two numerical examples, and the numerical results show the convergence and high precision of the algorithm.

References

[1]  刘诗焕, 朱先阳. 高维空间中阻尼Boussinesq方程初值问题的整体解[J]. 西南师范大学学报(自然科学版), 2018, 43(9): 1-5.
[2]  张琪慧, 尚月强. Navier-Stokes方程的亚格子模型后处理混合有限元方法[J]. 西南大学学报(自然科学版), 2019, 41(3): 67-74.
[3]  Hu, J., Huang, Y.Q. and Shen, H.M. (2004) The Lower Approximation of Eigen-value by Lumped Mass Finite Element Method. Journal of Computational Mathematics, 22, 545-556.
[4]  Grebenkov, D.S. and Nguyen, B.T. (2013) Geometrical Structure of Laplacian Eigenfunctions. SIAM Review, 55, 601-667.
https://doi.org/10.1137/120880173
[5]  Boffi, D. (2010) Finite Element Approximation of Eigenvalue Problems. Acta Numerica, 19, 1-120.
https://doi.org/10.1017/S0962492910000012
[6]  Zhou, J.-W., Zhang, J. and Xing, X.-Q. (2016) Galerkin Spec-tral Approximations for Optimal Contral Problems Governed by the Four Order Equation with an Integral Constraint on State. Computers & Mathematics with Applications, 72, 2549-2561.
https://doi.org/10.1016/j.camwa.2016.08.009
[7]  Davis, C.B. (2014) A Partition of Unity Method with Penalty for Fourth Order Problems. Journal of Scientific Computing, 60, 228-248.
https://doi.org/10.1007/s10915-013-9795-8
[8]  Sun, J.-G. (2012) A New Family of High Regularity Elements. Numerical Methods for Partial Differential Equations, 28, 1-16.
https://doi.org/10.1002/num.20601
[9]  Mercier, B., Osborn, J., Rappaz, J., et al. (1981) Eigenvalue Approximation by Mixed and Hybrid Methods. Mathematics of Computation, 36, 427-453.
https://doi.org/10.1090/S0025-5718-1981-0606505-9
[10]  Bjorstad, P.E. and Tjos-theim, B.P. (1997) Timely Communication: Efficient Algorithms for Solving a Fourth Order Equation with the Spec-tral-Galerkin Method. SIAM Journal on Scientific Computing, 18, 621-632.
https://doi.org/10.1137/S1064827596298233
[11]  Lv, T., Lin, Z.-B. and Shi, J.-M. (1988)A Fourth Order Finite Difference Approximation to the Eigenvalues of a Clamped Plate. Journal of Computational Mathematics, 6, 267-271.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133