%0 Journal Article %T 四阶特征值问题基于降阶格式的一种有效的Legendre-Galerkin逼近
An Efficient Legendre-Galerkin Approximation Based on Reduced Order Scheme for Fourth Order Eigenvalue Problems %A 魏涛 %J Advances in Applied Mathematics %P 1981-1988 %@ 2324-8009 %D 2023 %I Hans Publishing %R 10.12677/AAM.2023.124203 %X 本文提出了四阶特征值问题基于降阶格式的一种有效的Legendre-Galerkin逼近。首先,我们引入了一个辅助函数,将原问题转化为一个二阶混合格式。通过引入一些适当的Sobolev空间,其相应的变分形式被建立,并在解足够光滑条件下证明了其等价性。其次,基于Legendre多项式的正交性质,两组紧凑的基函数被构造,并导出具有稀疏系数矩阵的线性特征系统。最后,我们给出了两个数值例子,数值结果表明了算法的收敛性与高精度。
In this paper, an efficient Legendre-Galerkin approximation based on reduced order scheme for fourth order eigenvalue problems is presented. First, we introduce an auxiliary function to trans-form the original problem into a second order mixed format. By introducing some suitable Sobolev Spaces, the corresponding variational form is established, and its equivalence is proved if the solu-tion is sufficiently smooth. Secondly, based on the orthogonal property of Legendre polynomials, two groups of compact basis functions are constructed, and a linear characteristic system with sparse coefficients matrix is derived. Finally, we give two numerical examples, and the numerical results show the convergence and high precision of the algorithm. %K 四阶特征值问题,降阶格式,Legendre-Galerkin逼近,数值例子
Fourth Order Eigenvalue Problems %K Reduced Order Scheme %K Legendre-Galerkin Approximation %K Numerical Examples %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=64865