全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

虚拟交互技术在康复机器人中的应用
Application of Virtual Interaction Technology in Rehabilitation Robot

DOI: 10.12677/AIRR.2023.122005, PP. 29-38

Keywords: 人机交互,康复机器人,虚拟现实技术
Human-Computer Interaction
, Rehabilitation Robot, Virtual Reality Technology

Full-Text   Cite this paper   Add to My Lib

Abstract:

世界范围内有数量庞大的卒中患者群体,大多都存在认知功能障碍。虚拟现实技术因其优秀的人机交互性,在康复领域有广泛的应用前景。结合虚拟现实技术的康复机器人在神经治疗上效果显著。本文从虚拟环境、人体信息采集、虚拟环境中的信息反馈三个方向,介绍了VR技术在康复机器人中的应用形式,同时总结了此技术应用的发展趋势,这为相关领域的研究工作提供新的思路和方法。
There are a large number of stroke patients worldwide, most of whom have cognitive impairment. Because of its excellent man-machine interaction, virtual reality technology has a wide application prospect in the field of rehabilitation. The rehabilitation robot combined with virtual reality technology has a remarkable effect on nerve treatment. This paper introduces the application form of VR technology in rehabilitation robots from three directions of virtual environment, human body information collection and information feedback in virtual environment, and summarizes the development trend of the application of this technology, which provides new ideas and methods for the research work in related fields.

References

[1]  喻洪流. 康复机器人: 未来十大远景展望[J]. 中国康复医学杂志, 2020, 35(8): 900-902.
[2]  王秋惠, 魏玉坤, 刘力蒙. 康复机器人研究与应用进展[J]. 包装工程, 2018, 39(18):83-89.
https://doi.org/10.19554/j.cnki.1001-3563.2018.18.018
[3]  蔡丹娴, 曾庆, 何龙龙, 黄国志. 虚拟现实技术在卒中后偏瘫上肢康复中的应用及机制研究[J]. 中国组织工程研究, 2020, 24(32): 5228-5235.
[4]  Krebs, H.I., Palazzolo, J.J., Dipietro, L., et al. (2003) Rehabilitation Robotics: Performance-Based Progressive Robot- Assisted Therapy. Autonomous Robots, 15, 7-20.
https://doi.org/10.1023/A:1024494031121
[5]  张凤军, 戴国忠, 彭晓兰. 虚拟现实的人机交互综述[J]. 中国科学: 信息学, 2016, 46(12): 1711-1736.
[6]  陶科. 《现代康复医学理论与实践》——现代康复医学中康复工程的作用及进展[J]. 介入放射学杂志, 2020, 29(9): 966.
[7]  黄慧, 贾艳滨, 沈拾亦. 虚拟现实技术在认知康复中的研究进展[J]. 中国康复医学杂志, 2020, 35(2): 244-247.
[8]  Cohavi, O. and Levy-Tzedek, S. (2022) Young and Old Users Prefer Immersive Virtual Reality over a Social Robot for Short-Term Cognitive Training. International Journal of Human-Computer Studies, 161, Article ID: 102775.
https://doi.org/10.1016/j.ijhcs.2022.102775
[9]  刘鹏. 面向康复的上肢外骨骼机器人训练系统范式设计及其VR实现[D]: [硕士学位论文]. 成都: 电子科技大学, 2020.
https://doi.org/10.27005/d.cnki.gdzku.2020.002870
[10]  Bernardoni, F., ?zen, ?., Buetler, K. and Marchal-Crespo, L. (2019) Virtual Reality Environments and Haptic Strategies to Enhance Implicit Learning and Motivation in Robot-Assisted Training. 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, 24-28 June 2019, 760-765.
https://doi.org/10.1109/ICORR.2019.8779420
[11]  Topini, A., Sansom, W., Secciani, N., et al. (2022) Variable Admittance Control of a Hand Exoskeleton for Virtual Reality-Based Rehabilitation Tasks. Frontiers in Neurorobotics, 15, Article 789743.
https://doi.org/10.3389/fnbot.2021.789743
[12]  de la Iglesia, D.H., Mendes, A.S., González, G.V., et al. (2020) Connected Elbow Exoskeleton System for Rehabilitation Training Based on Virtual Reality and Context-Aware. Sensors, 20, Article No. 858.
https://doi.org/10.3390/s20030858
[13]  Liu, F., Han, X., Lin, M.X., et al. (2019) Remote Upper Limb Exoskeleton Rehabilitation Training System Based on Virtual Reality. 2019 16th International Conference on Ubiquitous Robots (UR), Jeju, 24-27 June 2019, 323-327.
https://doi.org/10.1109/URAI.2019.8768618
[14]  Wenk, N., Jordi, M.V., Buetler, K.A. and Marchal-Crespo, L. (2022) Hiding Assistive Robots during Training in Immersive VR Does Not Affect Users’ Motivation, Presence, Embodiment, Performance, Nor Visual Attention. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 390-399.
https://doi.org/10.1109/TNSRE.2022.3147260
[15]  Wu, X., Liu, H., Zhang, J. and Chen, W. (2019) Virtual Reality Training System for Upper Limb Rehabilitation. 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, 19-21 June 2019, 1969-1974.
https://doi.org/10.1109/ICIEA.2019.8834288
[16]  Covaciu, F., Pisla, A., Vaida, C., Gherman, B. and Pisla, D. (2020) Development of a Virtual Reality Simulator for a Lower Limb Rehabilitation Robot. 2020 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, 21-23 May 2020, 1-6.
https://doi.org/10.1109/AQTR49680.2020.9129981
[17]  Miloff, A., Carlbring, P., Hamilton, W., et al. (2020) Measuring Alliance Toward Embodied Virtual Therapists in the Era of Automated Treatments with the Virtual Therapist Alliance Scale (VTAS): Development and Psychometric Evaluation. Journal of Medical Internet Research, 22, e16660.
https://doi.org/10.2196/16660
[18]  Alqithami, S., Alzahrani, M., Alzahrani, A. and Mustafa, A. (2019) AR-Therapist: Design and Simulation of an AR-Game Environment as a CBT for Patients with ADHD. Healthcare, 7, Article No. 146.
https://doi.org/10.3390/healthcare7040146
[19]  Garcia, G.J., Alepuz, A., Balastegui, G., et al. (2022) ARMIA: A Sensorized Arm Wearable for Motor Rehabilitation. Biosensors, 12, Article No. 469.
https://doi.org/10.3390/bios12070469
[20]  Li, T., Su, Y., Chen, F., et al. (2022) Bioinspired Stretchable Fiber-Based Sensor toward Intelligent Human-Machine Interactions. ACS Applied Materials & Interfaces, 14, 22666-22677.
https://doi.org/10.1021/acsami.2c05823
[21]  王冬华. 生物融合式肘腕康复机器人控制软件设计与实现[D]: [硕士学位论文]. 秦皇岛: 燕山大学, 2020.
https://doi.org/10.27440/d.cnki.gysdu.2020.000229
[22]  Xiao, B., Chen, L., Zhang, X., et al. (2022) Design of a Virtual Reality Rehabilitation System for Upper Limbs That Inhibits Compensatory Movement. Medicine in Novel Technology and Devices, 13, Article ID: 100110.
https://doi.org/10.1016/j.medntd.2021.100110
[23]  Cha, K., Wang, J., Li, Y., et al. (2021) A Novel Upper-Limb Tracking System in a Virtual Environment for Stroke Rehabilitation. Journal of NeuroEngineering and Rehabilitation, 18, Article No. 166.
https://doi.org/10.1186/s12984-021-00957-6
[24]  杜豪, 杨岩, 张成杰. 虚拟现实技术在柔性上肢康复机器人中的应用[J]. 计算机工程与应用, 2020, 56(24): 260-265.
[25]  房华蕾. 基于生机接口的手部康复系统设计[D]: [硕士学位论文]. 秦皇岛: 燕山大学, 2021.
https://doi.org/10.27440/d.cnki.gysdu.2021.001478
[26]  张桃, 杨帮华, 段凯文, 唐健真, 韩旭. 基于运动想象脑机接口的手功能康复系统设计[J]. 中国康复理论与实践, 2017, 23(1): 4-9.
[27]  Zhang, Q., Jin, T., Cai, J., et al. (2022) Wearable Triboelectric Sensors Enabled Gait Analysis and Waist Motion Capture for IoT-Based Smart Healthcare Applications. Advanced Science, 9, Article ID: 2103694.
https://doi.org/10.1002/advs.202103694
[28]  Elor, A., Lessard, S., Teodorescu, M. and Kurniawan, S. (2019) Project Butterfly: Synergizing Immersive Virtual Reality with Actuated Soft Exosuit for Upper-Extremity Rehabilitation. 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, 23-27 March 2019, 1448-1456.
https://doi.org/10.1109/VR.2019.8798014
[29]  王昱, 吴向东, 施长城, 张佳楫, 李娜, 马冶浩, 陶亮, 唐敏, 左国坤. 基于力跟踪的上肢康复机器人系统中视觉与触觉反馈融合技术研究[J]. 中国康复理论与实践, 2021, 27(4): 478-486.
[30]  Wang, C., Peng, L. and Hou, Z.-G. (2022) A Control Framework for Adaptation of Training Task and Robotic Assistance for Promoting Motor Learning with an Upper Limb Rehabilitation Robot. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52, 7737-7747.
https://doi.org/10.1109/TSMC.2022.3163916
[31]  Liao, X., Song, W., Zhang, X., et al. (2019) Hetero-Contact Microstructure to Program Discerning Tactile Interactions for Virtual Reality. Nano Energy, 60, 127-136.
https://doi.org/10.1016/j.nanoen.2019.03.048
[32]  Yang, L., Zhang, F., Zhu, J. and Fu, Y. (2021) A Portable Device for Hand Rehabilitation with Force Cognition: Design, Interaction, and Experiment. IEEE Transactions on Cognitive and Developmental Systems, 14, 599-607.
https://doi.org/10.1109/TCDS.2021.3055626
[33]  胡进, 侯增广, 陈翼雄, 张峰, 王卫群. 下肢康复机器人及其交互控制方法[J]. 自动化学报, 2014, 40(11): 2377- 2390.
[34]  Lin, M., Wang, H., Niu, J., et al. (2021) Adaptive Admittance Control Scheme with Virtual Reality Interaction for Robot-Assisted Lower Limb Strength Training. Machines, 9, Article No. 301.
https://doi.org/10.3390/machines9110301
[35]  Wilson, S., Eberle, H., Hayashi, Y., et al. (2019) Formulation of a New Gradient Descent MARG Orientation Algorithm: Case Study on Robot Teleoperation. Mechanical Systems and Signal Processing, 130, 183-200.
https://doi.org/10.1016/j.ymssp.2019.04.064
[36]  李彦敏. 可穿戴式多传感器融合动作捕捉系统[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2021.
https://doi.org/10.27061/d.cnki.ghgdu.2021.001935
[37]  张新荣. 基于动作捕捉传感器的人体日常行为识别研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2015.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133