|
不同眼轴选择人工晶状体计算公式的研究进展
|
Abstract:
随着屈光性白内障手术时代的到来,人工晶状体(intraocular lens, IOL)计算公式的持续更新与换代不断融合了诸如光线追踪、更先进的现代回归模型、人工智能、三维成像等新技术与新数据,在这个大背景下许多新的公式应运而生,如Barrett Universal II公式、Kane公式、Hill-radial basis (Hill-RBF)公式、Olsen公式、EVO 2.0公式和Ladas超级公式等。白内障术后的屈光准确性与眼轴的相关性主要体现在,术前准确测量眼轴参数对IOL选择最优公式来计算屈光度数的关键辅助作用。本文总结了不同眼轴应如何选择IOL度数计算公式,将其分为3个部分阐述:短眼轴选择IOL公式、长眼轴选择IOL公式、全眼轴选择IOL公式,本文根据这三个不同眼轴范畴,就包含新型公式在内的IOL计算公式准确度比较的研究进展作一综述。
With the advent of refractive cataract surgery, the intraocular lens (IOL) formula continues to be updated and modernised to incorporate new technologies and data such as ray tracing, more ad-vanced modern regression models, artificial intelligence, 3D imaging, etc. Many new formulas have emerged in this context, such as the Barrett Universal II, Kane, Hill-radial basis (Hill-RBF), Olsen, EVO 2.0, and Ladas Super, etc. The correlation between refractive accuracy after cataract surgery and axial length (AL) is mainly reflected in the key role of accurate preoperative measurement of AL parameters as an aid to the selection of the optimal formula for calculating the refractive force of IOL. This paper summarises how to choose formulas for different ALs and divides them into three parts: IOL formula selection for short ALs, IOL formula selection for long ALs, IOL formula selection for full ALs. According to these three different ALs parts, this paper provides a review of the re-search progress on the comparison of the accuracy of IOL calculation formulas including some new formulas.
[1] | Lee, T.H., Sung, M.S., Cui, L., Li, Y. and Yoon, K.C. (2015) Factors Affecting the Accuracy of Intraocular Lens Power Calculation with Lenstar. Chonnam Medical Journal, 51, 91-96. https://doi.org/10.4068/cmj.2015.51.2.91 |
[2] | Hoffer, K.J. and Savini, G. (2017) IOL Power Calculation in Short and Long Eyes. Asia-Pacific Journal of Ophthalmology, 6, 330-331. |
[3] | Hoffer, K.J. (1993) The Hoffer Q Formula: A Comparison of Theoretic and Regression Formulas. Journal of Cataract and Refractive Surgery, 19, 700-712. https://doi.org/10.1016/S0886-3350(13)80338-0 |
[4] | Hoffer, K.J. (2000) Clinical Results Using the Holladay 2 Intraocular Lens Power Formula. Journal of Cataract and Refractive Surgery, 26, 1233-1237. https://doi.org/10.1016/S0886-3350(00)00376-X |
[5] | Aristodemou, P., Knox Cartwright, N.E., Sparrow, J.M., et al. (2011) Formula Choice: Hoffer Q, Holladay 1, or SRK/T and Refractive Outcomes in 8108 Eyes after Cataract Sur-gery with Biometry by Partial Coherence Interferometry. Journal of Cataract and Refractive Surgery, 37, 63-71. https://doi.org/10.1016/j.jcrs.2010.07.032 |
[6] | Eom, Y., Kang, S.-Y., Song, J.S., Kim, Y.Y. and Kim, H.M. (2014) Comparison of Hoffer Q and Haigis Formulae for Intraocular Lens Power Calculation According to the Anterior Cham-ber Depth in Short Eyes. American Journal of Ophthalmology, 157, 818-824. https://doi.org/10.1016/j.ajo.2013.12.017 |
[7] | Kane, J.X., Van Heerden, A., Atik, A. and Petsoglou, C. (2016) In-traocular Lens Power Formula Accuracy: Comparison of 7 Formulas. Journal of Cataract and Refractive Surgery, 42, 1490-1500.
https://doi.org/10.1016/j.jcrs.2016.07.021 |
[8] | Melles, R.B., Holladay, J.T. and Chang, W.J. (2018) Accuracy of Intraocular Lens Calculation Formulas. Ophthalmology, 125, 169-178. https://doi.org/10.1016/j.ophtha.2017.08.027 |
[9] | Kane, J.X., Van Heerden, A., Atik, A. and Petsoglou, C. (2017) Accuracy of 3 New Methods for Intraocular Lens Power Selection. Journal of Cataract and Refractive Surgery, 43, 333-339. https://doi.org/10.1016/j.jcrs.2016.12.021 |
[10] | Retzlaff, J.A., Sanders, D.R. and Kraff, M.C. (1990) De-velopment of the SRK/T Intraocular Lens Implant Power Calculation Formula. Journal of Cataract and Refractive Sur-gery, 16, 333-340.
https://doi.org/10.1016/S0886-3350(13)80705-5 |
[11] | Fedorov, S.N., Kolinko, A.I. and Kolinko, A.I. (1967) A Method of Calculating the Optical Power of the Intraocular Lens. Vestnik Oftalmologii, 80, 27-31. |
[12] | Karabela, Y., Eliacik, M. and Kaya, F. (2016) Performance of the SRK/T Formula Using A-Scan Ultrasound Biometry after Phacoemulsification in Eyes with Short and Long Axial Lengths. BMC Ophthalmology, 16, Article No. 96.
https://doi.org/10.1186/s12886-016-0271-8 |
[13] | Abulafia, A., Barrett, G.D., Rotenberg, M., et al. (2015) Intraocu-lar Lens Power Calculation for Eyes with an Axial Length Greater Than 26.0 Mm: Comparison of Formulas and Meth-ods. Journal of Cataract and Refractive Surgery, 41, 548-556. https://doi.org/10.1016/j.jcrs.2014.06.033 |
[14] | Razmjoo, H., Atarzadeh, H., Kargar, N., et al. (2017) The Compara-tive Study of Refractive Index Variations between Haigis, SRK/T and Hoffer-Q Formulas Used for Preoperative Biome-try Calculation in Patients with the Axial Length > 25 mm. Advanced Biomedical Research, 6. |
[15] | Wang, L. and Koch, D.D. (2018) Modified Axial Length Adjustment Formulas in Long Eyes. Journal of Cataract and Refractive Surgery, 44, 1396-1397. https://doi.org/10.1016/j.jcrs.2018.07.049 |
[16] | 吉祥, 张丁丁, 毛馨遥, 等. Wang-Koch优化眼轴SRK/T公式预测不同眼轴长度下高度近视眼合并白内障术后屈光度准确性的临床研究[J]. 中华眼科医学杂志(电子版), 2020, 10(5): 281-287. |
[17] | Haigis, W. (2009) Intraocular Lens Calculation in Extreme Myopia. Journal of Cataract and Refractive Surgery, 35, 906-911. https://doi.org/10.1016/j.jcrs.2008.12.035 |
[18] | Schr?der, S., Leydolt, C., Menapace, R., Eppig, T. and Langenbucher, A. (2016) Determination of Personalized IOL- Constants for the Haigis Formula under Consideration of Measurement Precision. PLOS ONE, 11, e0158988.
https://doi.org/10.1371/journal.pone.0158988 |
[19] | Zhang, Z., Miao, Y., Fang, X., Luo, Q. and Wang, Y. (2108) Accuracy of the Haigis and SRK/T Formulas in Eyes Longer than 29.0 mm and the Influence of Central Corneal Kera-tometry Reading. Current Eye Research, 43, 1316-1321.
https://doi.org/10.1080/02713683.2018.1488265 |
[20] | Bang, S., Edell, E., Yu, Q., Pratzer, K. and Stark, W. (2011) Accuracy of Intraocular Lens Calculations Using the IOLMaster in Eyes with Long Axial Length and a Comparison of Various Formulas. Ophthalmology, 118, 503-506.
https://doi.org/10.1016/j.ophtha.2010.07.008 |
[21] | Sharma, R., Maharajan, P., Kotta, S. and Maharajan, S. (2014) Prediction of Refractive Outcome after Cataract Surgery Using Partial Coherence Interferometry: Comparison of SRK/T and Haigis Formulae. International Ophthalmology, 34, 451-455. https://doi.org/10.1007/s10792-012-9671-9 |
[22] | Chen, C., Xu, X., Miao, Y., et al. (2015) Accuracy of Intraocular Lens Power Formulas Involving 148 Eyes with Long Axial Lengths: A Retrospective Chart-Review Study. Journal of Ophthalmology, 2015, Article ID: 976847.
https://doi.org/10.1155/2015/976847 |
[23] | 竺向佳, 何雯雯, 杜钰, 等. 三种人工晶状体计算公式对高度近视眼并发性白内障的预测误差比较[J]. 中华眼科杂志, 2017, 53(4): 260-265. |
[24] | 马秀艳, 周健. 高度近视眼人工晶状体度数计算公式的准确性比较[J]. 眼科新进展, 2016, 36(9): 863-867. |
[25] | Wang, L., Shirayama, M., Ma, X.J., Kohnen, T. and Koch, D. (2011) Optimizing Intraocular Lens Power Calculations in Eyes with Axial Lengths above 25.0 mm. Journal of Cataract and Refractive Surgery, 37, 2018-2027.
https://doi.org/10.1016/j.jcrs.2011.05.042 |
[26] | Kuthirummal, N., Vanathi, M., Mukhija, R., et al. (2020) Evaluation of Barrett Universal II Formula for Intraocular Lens Power Calculation in Asian Indian Population. Indian Journal of Ophthalmology, 68, 59-64.
https://doi.org/10.4103/ijo.IJO_600_19 |
[27] | 蔡金彪, 王剑锋, 周琦, 等. 不同人工晶状体计算公式预测高度近视白内障术后屈光度的准确性比较[J]. 临床眼科杂志, 2022, 30(3): 200-205. |
[28] | Zhou, D., Sun, Z. and Deng, G. (2019) Accuracy of the Refractive Prediction Determined by Intraocular Lens Power Calculation Formulas in High Myo-pia. Indian Journal of Ophthalmology, 67, 484-489.
https://doi.org/10.4103/ijo.IJO_937_18 |
[29] | Rong, X., He, W., Zhu, Q., et al. (2019) Intraocular Lens Power Cal-culation in Eyes with Extreme Myopia: Comparison of Barrett Universal II, Haigis, and Olsen Formulas. Journal of Cat-aract and Refractive Surgery, 45, 732-737.
https://doi.org/10.1016/j.jcrs.2018.12.025 |
[30] | Ji, J., Liu, Y., Zhang, J., et al. (2021) Comparison of Six Methods for the Intraocular Lens Power Calculation in High Myopic Eyes. European Journal of Ophthalmology, 31, 96-102. https://doi.org/10.1177/1120672119889016 |
[31] | Pereira, A., Popovic, M.M., Ahmed, Y., et al. (2021) A Compar-ative Analysis of 12 Intraocular Lens Power Formulas. International Ophthalmology, 41, 4137-4150. https://doi.org/10.1007/s10792-021-01966-z |
[32] | Olsen, T. and Hoffmann, P. (2014) C Constant: New Concept for Ray Tracing-Assisted Intraocular Lens Power Calculation. Journal of Cataract and Refractive Surgery, 40, 764-773. https://doi.org/10.1016/j.jcrs.2013.10.037 |
[33] | Cooke, D.L. and Cooke, T.L. (2016) Comparison of 9 Intraocular Lens Power Calculation Formulas. Journal of Cataract and Refractive Surgery, 42, 1157-1164. https://doi.org/10.1016/j.jcrs.2016.06.029 |
[34] | Darcy, K., Gun, D., Tavassoli, S., Sparrow, J. and Kane, J.X. (2020) A Ssessment of the Accuracy of New and Updated Intraocular Lens Power Calculation Formulas in 10,930 Eyes from the UK National Health Service. Journal of Cataract & Refractive Surgery, 46, 2-7. |
[35] | Wan, K.H., Lam, T.C.H., Yu, M.C.Y. and Chan, T.C.Y. (2019) Accuracy and Precision of Intraocular Lens Calculations Using the New Hill-RBF Version 2.0 in Eyes with High Axial Myopia. American Journal of Ophthalmology, 205, 66-73. https://doi.org/10.1016/j.ajo.2019.04.019 |
[36] | Roberts, T.V., Hodge, C., Sutton, G., et al. (2018) Comparison of Hill-Radial Basis Function, Barrett Universal and Current Third Generation Formulas for the Calculation of Intraocular Lens Power during Cataract Surgery. Clinical & Experimental Ophthalmology, 46, 240-246. https://doi.org/10.1111/ceo.13034 |
[37] | Tan, Q., Lin, D., Wang, L., et al. (2021) Comparison of IOL Power Calcu-lation Formulas for a Trifocal IOL in Eyes with High Myopia. Journal of Refractive Surgery, 37, 538-544. https://doi.org/10.3928/1081597X-20210506-01 |