全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

碳纳米材料对植物生长应用的研究进展
Research Progress of Carbon Nanomaterials for Plant Growth Applications

DOI: 10.12677/MS.2023.133017, PP. 135-142

Keywords: 碳纳米材料,植物生长,生理特征,形态,土壤结构
Carbon Nanomaterials
, Plant Growth, Physiological Characteristics, Morphology, Soil Structure

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着新型纳米材料的发展,碳纳米材料得到广泛的应用,特别是新型的功能性石墨烯材料的应用越来越广。近年来,将碳纳米材料运用到农业领域已经得到了一定的发展,碳纳米材料对植物的生长作用主要体现在在低浓度促进生长,高浓度抑制生长;此外,碳纳米材料还可通过改良土壤环境,减少土壤营养物质流失、改善土壤结构等方面,来促进植物的生长。为了更加了解和利用碳纳米材料,探索其对植物生长的促进规律以及作用机制,本文从植物的形态生理特征、土壤结构两个方面综述了近年来碳纳米材料对植物生长的影响;最后对碳纳米材料在植物种植应用上的研究做出了总结。
With the development of new nanomaterials, carbon nanomaterials have been widely used; especially the new functional graphene materials have been more and more widely used. In recent years, the application of carbon nanomaterials to agriculture has been developed to a certain extent. The effect of carbon nanomaterials on plant growth is mainly reflected in promoting growth at low concentration and inhibiting growth at high concentration; in addition, carbon nanomaterials can also promote plant growth by improving soil environment, reducing soil nutrient loss and improv-ing soil structure. In order to better understand and utilize carbon nanomaterials and explore their promotion rules and mechanisms of plant growth, this paper reviews the effects of carbon nano-materials on plant growth in recent years from two aspects: morphological and physiological char-acteristics of plants and soil structure; finally, it makes a summary of the research on the applica-tion of carbon nanomaterials in plant cultivation.

References

[1]  Angelucci, R., et al. (2003) Application of Nanotechnologies in High Energy Physics. Nuclear Physics B—Proceedings Supplements, 125, 164-168.
https://doi.org/10.1016/S0920-5632(03)90984-4
[2]  闫金定. 我国纳米科学技术发展现状及战略思考[J]. 科学通报, 2015, 60(1): 30-37.
[3]  De Chiffre, L., Kunzmann, H., Peggs, G.N. and Lucca, D.A. (2003) Surfaces in Precision Engineering, Microengineering and Nanotechnology. CIRP Annals, 52, 561-577.
https://doi.org/10.1016/S0007-8506(07)60204-2
[4]  Borm, P.J.A., et al. (2006) The Potential Risks of Nano-materials: A Review Carried Out for ECETOC. Particle and Fibre Toxicology, 3, Article No. 11.
[5]  Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F. and Smalley, R.E. (1985) C60: Buckminsterfullerene. Nature, 318, 162-163.
https://doi.org/10.1038/318162a0
[6]  Iijima, S. (1991) Helical Microtubules of Graphitic Carbon. Nature, 354, 56-58.
https://doi.org/10.1038/354056a0
[7]  Novoselov, K.S., et al. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science (New York, N.Y.), 306, 666-669.
https://doi.org/10.1126/science.1102896
[8]  Bennett, S.W., Adeleye, A., Ji, Z.X. and Keller, A.A. (2013) Stability, Metal Leaching, Photoactivity and Toxicity in Freshwater Systems of Commercial Single Wall Carbon Nanotubes. Water Research, 47, 4074-4085.
https://doi.org/10.1016/j.watres.2012.12.039
[9]  Hurt, R.H., Monthioux, M. and Kane, A. (2006) Toxicology of Carbon Nanomaterials: Status, Trends, and Perspectives on the Special Issue. Carbon, 44, 1028-1033.
https://doi.org/10.1016/j.carbon.2005.12.023
[10]  Srivastava, V., Gusain, D. and Sharma, Y.C. (2015) Critical Re-view on the Toxicity of Some Widely Used Engineered Nanoparticles. Industrial & Engineering Chemistry Research, 54, 6209-6233.
https://doi.org/10.1021/acs.iecr.5b01610
[11]  Dresselhaus, M.S., Dresselhaus, G. and Jorio, A. (2004) Unusual Properties and Structure of Carbon Nanotubes. Annual Review of Materials Research, 34, 247-278.
https://doi.org/10.1146/annurev.matsci.34.040203.114607
[12]  李朝阳, 杨胜香, 陈玲, 等. 纳米材料改良土壤对小白菜吸收和富集重金属的影响[J]. 湖南农业科学, 2010(23): 57-59.
[13]  Arnab, M., et al. (2016) Carbon Na-nomaterials in Agriculture: A Critical Review. Frontiers in Plant Science, 7, 172.
https://doi.org/10.3389/fpls.2016.00172
[14]  Mondal, A., Basu, R., Das, S. and Nandy, P. (2011) Beneficial Role of Carbon Nanotubes on Mustard Plant Growth: An Agricultural Prospect. Journal of Nanoparticle Research, 13, 4519-4528.
https://doi.org/10.1007/s11051-011-0406-z
[15]  Saxena, M., Maity, S. and Sarkar, S. (2014) Carbon Nanoparticles in “Biochar” Boost Wheat (Triticum aestivum) Plant Growth. RSC Advances, 4, 39948-39954.
https://doi.org/10.1039/C4RA06535B
[16]  Monica, R.C. and Cremonini, R. (2009) Nanoparticles and Higher Plants. Caryologia, 62, 161-165.
https://doi.org/10.1080/00087114.2004.10589681
[17]  Begum, P., Ikhtiari, R. and Ugetsu, B.F. (2011) Graphene Phytotoxicity in the Seedling Stage of Cabbage, Tomato, Red Spinach, and Lettuce. Carbon, 49, 3907-3919.
https://doi.org/10.1016/j.carbon.2011.05.029
[18]  冯璐, 王玉国, 温银元, 等. 纳米碳对离体培养条件下几种植物生长及分化的影响[J]. 生物技术通报, 2017. 33(4): 164-168.
[19]  胡俊杰, 劳志朗, 吴康铭, 等. 氧化石墨烯的环境行为和毒性效应研究进展[J]. 生态环境学报, 2017, 26(12): 2169-2176.
[20]  谈诗. 氧化石墨烯对大花蕙兰组织培养的效应及防褐变机理研究[D]: [硕士学位论文]. 长沙: 湖南农业大学, 2014.
[21]  赵鑫. 纳米碳对桃园土壤肥力及植株养分吸收的影响[D]: [硕士学位论文]. 泰安: 山东农业大学, 2017.
[22]  Park, S., et al. (2020) Graphene Oxide-Assisted Promotion of Plant Growth and Stability. Nanomaterials, 10, 758.
https://doi.org/10.3390/nano10040758
[23]  Liu, S., et al. (2015) Effects of Graphene on Germination and Seedling Morphology in Rice. Journal of Nanoscience and Nanotechnology, 15, 2695-2701.
https://doi.org/10.1166/jnn.2015.9254
[24]  胡晓飞, 赵建国, 高利岩, 等. 石墨烯对树莓组培苗生长发育影响[J]. 新型炭材料, 2019, 34(5): 447-454.
[25]  He, Y., et al. (2018) Graphene Oxide as a Water Transporter Promoting Germination of Plants in Soil. Nano Research, 11, 1928-1937.
https://doi.org/10.1007/s12274-017-1810-1
[26]  Guo, X., et al. (2021) Effects of Graphene Oxide on Tomato Growth in Different Stages. Plant Physiology and Bio-Chemistry, 162, 447-455.
https://doi.org/10.1016/j.plaphy.2021.03.013
[27]  Chen, Z., et al. (2021) Influence of Graphene on the Multiple Metabolic Pathways of Zea mays Roots Based on Transcriptome Analysis. PLOS ONE, 16, e0244856.
https://doi.org/10.1371/journal.pone.0244856
[28]  Chen, Z. and Wang, Q. (2021) Graphene Ameliorates Sa-line-Alkaline Stress-Induced Damage and Improves Growth and Tolerance in Alfalfa (Medicago sativa L.). Plant Physi-ology and Biochemistry, 163, 128-138.
https://doi.org/10.1016/j.plaphy.2021.03.039
[29]  Khodakovskaya, M., et al. (2012) Carbon Nanotubes Are Able to Penetrate Plant Seed Coat and Dramatically Affect Seed Germination and Plant Growth. Acs Nano, 6, 3221-3227.
https://doi.org/10.1021/nn302965w
[30]  Chen, J.J., et al. (2015) Effects of Graphene on Seed Germination and Seedling Growth. Journal of Nanoparticle Research: An Interdisciplinary Forum for Nanoscale Science and Technology, 17, Article No. 78.
[31]  Khare, R., et al. (2017) Differential Sulphur Assimilation Mechanism Regulates Response of Arabidopsis thaliana Natural Variation towards Arsenic Stress under Limiting Sulphur Condition. Journal of Hazardous Materials, 337, 198-207.
https://doi.org/10.1016/j.jhazmat.2017.05.009
[32]  Ren, W.J., Chang, H.W. and Teng, Y. (2016) Sulfonated Gra-phene-Induced Hormesis Is Mediated through Oxidative Stress in the Roots of Maize Seedlings. Science of the Total En-vironment, 572, 926-934.
https://doi.org/10.1016/j.scitotenv.2016.07.214
[33]  Anjum, N.A., et al. (2014) Single-Bilayer Graphene Oxide Sheet Impacts and Underlying Potential Mechanism Assessment in Germinating Faba Bean (Vicia faba L.). Science of the Total Environment, 472, 834-841.
https://doi.org/10.1016/j.scitotenv.2013.11.018
[34]  赵琳, 宋瑞瑞, 吴琦, 等. 氧化石墨烯对玉米幼苗生长及生理特征的影响[J]. 农业环境科学学报, 2021, 40(6): 1167-1173.
[35]  Lin, C., Fugetsu, B. and Tan, X.-M. (2009) Studies on Toxicity of Multi-Walled Carbon Nanotubes on Suspension Rice Cells. Carbon, 47, 3479-3487.
https://doi.org/10.1016/j.carbon.2009.08.018
[36]  Hao, Y., et al. (2018) Carbon Nanomaterials Alter Plant Physi-ology and Soil Bacterial Community Composition in a Rice-Soil-Bacterial Ecosystem. Environmental Pollution, 232, 123-136.
https://doi.org/10.1016/j.envpol.2017.09.024
[37]  Li, F.H., et al. (2018) The Effect of Graphene Oxide on Adventitious Root Formation and Growth in Apple. Plant Physiology & Biochemistry, 129, 122-129.
https://doi.org/10.1016/j.plaphy.2018.05.029
[38]  刘阳生, 白庆中. 膨润土改性天然粘土防渗材料的研究[J]. 应用基础与工程科学学报, 2002, 10(2): 143-149.
[39]  Rashid, A., et al. (2017) Development of Sustainable Masonry Units from Flood Mud Soil: Strength and Morphology Investigations. Construction & Building Materials, 131, 682-689.
https://doi.org/10.1016/j.conbuildmat.2016.11.039
[40]  Latifi, N., et al. (2017) Tropical Residual Soil Stabilization: A Powder form Material for Increasing Soil Strength. Construction & Building Materials, 147, 827-836.
https://doi.org/10.1016/j.conbuildmat.2017.04.115
[41]  Han, Z., et al. (2016) A Review of Groundwater Contam-ination near Municipal Solid Waste Landfill Sites in China. Science of the Total Environment, 569-570, 1255-1264.
https://doi.org/10.1016/j.scitotenv.2016.06.201
[42]  Ayeldeen, M., et al. (2017) Enhancing Mechanical Behaviors of Collapsible Soil Using Two Biopolymers. Journal of Rock Mechanics and Geotechnical Engineering, 9, 329-339.
https://doi.org/10.1016/j.jrmge.2016.11.007
[43]  Arulrajah, A., et al. (2016) Stabilization of Recycled Demolition Aggregates by Geopolymers Comprising Calcium Carbide Residue, Fly Ash and Slag Precursors. Construction and Building Materials, 114, 864-873.
https://doi.org/10.1016/j.conbuildmat.2016.03.150
[44]  Ghasabkolaei, N., et al. (2017) Geotechnical Properties of the Soils Modified with Nanomaterials: A Comprehensive Review. Archives of Civil & Mechanical Engineering, 17, 639-650.
https://doi.org/10.1016/j.acme.2017.01.010
[45]  Tabarsa, A., et al. (2018) Laboratory Investigation and Field Evaluation of Loess Improvement Using Nanoclay—A Sustainable Material for Construction. Construction and Building Materials, 158, 454-463.
https://doi.org/10.1016/j.conbuildmat.2017.09.096
[46]  谭帅, 周蓓蓓, 王全九. 纳米碳对扰动黄绵土水分入渗过程的影响[J]. 土壤学报, 2014, 51(2): 263-269.
[47]  周蓓蓓, 陈晓鹏, 吕金榜, 等. 纳米碳对不同植被覆盖下黄土坡地降雨侵蚀的抑制效果[J]. 农业工程学报, 2017, 33(2): 116-124.
[48]  陈晓鹏. 纳米碳对黄土区水土流失及养分运移特征的影响研究[D]: [硕士学位论文]. 西安: 西安理工大学, 2018.
[49]  张志明, 等. 纳米增效肥对杂交稻的增产效果研究[J]. 腐植酸, 2012(2): 15-19.
[50]  薛文强, 等. 纳米碳混合层对土壤水分入渗特性及水分分布影响[J]. 水土保持学报, 2018, 32(3): 152-159.
[51]  Liang, B., et al. (2006) Black Carbon Increases Cation Exchange Capacity in Soils. Soil Science Society of America Journal, 70, 1719-1730.
https://doi.org/10.2136/sssaj2005.0383
[52]  温善菊. 土壤无机纳米微粒对土壤保肥供肥及作物生育的影响[D]: [硕士学位论文]. 长春: 吉林农业大学, 2005.
[53]  隋祺祺, 等. 石墨烯溶胶配施化肥对土壤中养分流失的影响[J]. 水土保持学报, 2019, 33(1): 39-44.
[54]  Wu, M.Y. (2013) Effects of Incorporation of Nano-Carbon into Slow-Released Fertilizer on Rice Yield and Nitrogen Loss in Surface Water of Paddy Soil. 2013 3rd International Con-ference on Intelligent System Design and Engineering Applications, Hong Kong, 16-18 January 2013, 676-681.
https://doi.org/10.1109/ISDEA.2012.161
[55]  田艳飞, 黄占斌, 刘丹, 等. 纳米碳及其复合材料对油菜生长和土壤氮素保持效应的影响[J]. 环境科学学报, 2016, 36(9): 3339-3345.
[56]  高荣广, 赵鑫, 高晓兰, 等. 纳米碳对桃园土壤肥力及植株养分吸收的影响[J]. 落叶果树, 2018, 50(3): 11-14.
[57]  张哲, 范喜福, 孙磊, 等. 纳米肥料对水稻生长特性的影响[J]. 黑龙江农业科学, 2010(8): 50-52.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133