|
融合心理行为的家政服务员专业性分类研究
|
Abstract:
本文为进行家政服务员专业性分类研究,设计了心理行为量表进行问卷调查,并基于Y企业家政服务员的丰富的数据资源,进行了心理因素与行为属性的相关性分析,确定了影响家政服务员专业性的心理行为属性,进而提出了家政服务员专业性分类模型,并采用过采样方法平衡训练数据集进行分类模型训练,针对测试集进行家政服务员专业性分类预测。研究结果表明,心理因素与行为属性显著相关,确立了影响家政服务员专业性的若干心理行为属性,基于心理行为属性平衡训练数据集建立的分类算法对测试集中家政服务员专业性分类准确率达到79.8%。
In order to study the professional classification of domestic staff, this paper designs a psychological behavior scale to conduct a questionnaire survey. Based on the abundant data resources of domes-tic staff in Y Enterprise, this paper analyzes the correlation between psychological factors and behavioral attributes, determines the psychological behavior attributes that affect the professional-ism of domestic staff, and then proposes a professional classification model for domestic staff. The over-sampling method is used to balance the training data set for classification model training, and the professional classification prediction of domestic staff is carried out according to the test set. The results show that there is a significant correlation between psychological factors and behavioral attributes, and a number of psychological behavioral attributes affecting the professionalism of domestic staff are established. The classification algorithm based on the balance training data set of psychological behavioral attributes can achieve 79.8% accuracy in the professional classification of domestic staff in the test set.
[1] | 苏国明, 王超超, 徐红, 吴秀荣, 张景春. 多元需求背景下家政服务业人才队伍建设探究[J]. 职业技术, 2022, 21(10): 53-59. |
[2] | 于丽玲, 吕兆丰, 王晓燕, 等. 乡村医生的医疗卫生服务行为现状及心理因素分析[J]. 中国全科医学, 2011, 14(8): 881-883. |
[3] | 徐启慧, 陈翠萍, 贺学敏, 杜康泰. 基于CiteSpace的我国护理职业认同相关研究的可视化分析[J]. 职业与健康, 2022, 38(23): 3282-3287. |
[4] | 蔡敏, 季子凌, 俞国桥. 心理契约与制造业新生代员工离职倾向——职业前景感知的调节作用[J]. 杭州电子科技大学学报(社会科学版), 2022, 18(5): 18-24+40. |
[5] | 陈肇第. 社会服务传递视角下社会工作专业性研究——以武汉市H区青少年暑期托管工作为例[D]: [硕士学位论文]. 武汉: 华中师范大学, 2017. |
[6] | 李园园, 鄢超云, 韦嘉. 幼儿园教师认知共情对职业倦怠的影响[J]. 中国健康教育, 2022, 38(7): 613-616+626. |
[7] | Patnaik, B., Mishra, M., Bansal, R.C. and Jena, R.K. (2021) MODWT-XGBoost Based Smart Energy Solution for Fault Detection and Classification in a Smart Microgrid. Applied Energy, 285, Article ID: 116457.
https://doi.org/10.1016/j.apenergy.2021.116457 |
[8] | Gertz, M., et al. (2020) Using the XGBoost Algorithm to Classify Neck and Leg Activity Sensor Data Using On-Farm Health Recordings for Locomotor-Associated Diseases. Computers and Electronics in Agriculture, 173, Article ID: 105404.
https://doi.org/10.1016/j.compag.2020.105404 |