全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

低氧胁迫对鱼类生理功能影响及调控机制
Effects of Hypoxia Stress on Physiological Function and Regulation Mechanism in Fish

DOI: 10.12677/AMS.2022.94022, PP. 197-206

Keywords: 溶解氧,低氧应激,生理功能,分子调控机制
Dissolved Oxygen
, Hypoxia Stress, Physiological Function, Molecular Regulation Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

氧气是动植物生存的必要条件之一。对于鱼类来说,溶解氧对其生命活动影响深远。溶解氧水平严重干扰了其生存、发育以及繁殖等生命过程。本文通过论述低氧对鱼类生理代谢、行为活动、组织形态和生殖发育等方面的影响,鱼类应对低氧胁迫的生理和分子调控机制,以及研究低氧胁迫分子调控机制的实验方法,为探究鱼类低氧胁迫分子调控机制提供参考借鉴,同时为培育耐缺氧型养殖鱼类提供理论支撑。
Oxygen is one of the necessary conditions for the survival of animals and plants. For fish, dissolved oxygen has a profound impact on their life activities. Dissolved oxygen levels seriously interfere with life processes such as survival, development, and reproduction. In this paper, by discussing the effects of hypoxia on physiological metabolism, behavioral activities, tissue morphology, reproductive development, etc., of fish, the physiological and molecular regula-tion mechanisms of fish in response to hypoxia stress, and the experimental methods for studying the molecular regulation mechanism of hypoxia stress, so as to provide reference for exploring the molecular regulatory mechanism of hypoxia stress of fish, and at the same time provide theoretical support for cultivating hypoxia-tolerant aquaculture fish.

References

[1]  Neilan, R.M. and Rose, K. (2014) Simulating the Effects of Fluctuating Dissolved Oxygen on Growth, Reproduction, and Survival of Fish and Shrimp. Journal of Theoretical Biology, 343, 54-68.
https://doi.org/10.1016/j.jtbi.2013.11.004
[2]  Diaz, R.J. and Breitburg, D.L. (2009) Chapter 1. The Hypoxic En-vironment. In: Richards, J.G., Farrell, A.P. and Brauner, C.J., Eds., Fish Physiology, Academic Press, Burlington, Vol. 27, 1-23.
https://doi.org/10.1016/S1546-5098(08)00001-0
[3]  Robertson, C.E., Wright, P.A., K?blitz, L. and Bernier, N.J. (2014) Hypoxia-Inducible Factor-1 Mediates Adaptive Developmental Plasticity of Hypoxia Tolerance in Zebrafish, Danio rerio. Proceedings of the Royal Society B: Biological Sciences, 281, Article ID: 20140637.
https://doi.org/10.1098/rspb.2014.0637
[4]  Sun, J.L., Zhao, L.L., Wu, Hao., Liu, Q., Liao, L., Luo, J., Lian, W.Q., Cui, C., Jin, L., Ma, J.D., Li, M.Z. and Yang, S. (2020) Acute Hypoxia Changes the Mode of Glucose and Lipid Utiliza-tion in the Liver of the Largemouth Bass (Micropterus salmoides). Science of the Total Environment, 713, Article ID: 135157.
https://doi.org/10.1016/j.scitotenv.2019.135157
[5]  徐贺, 陈秀梅, 王桂芹, 丛林梅, 陈伟. 低氧胁迫在水产养殖中的研究进展[J]. 饲料工业, 2016, 37(2): 33-37.
[6]  Semenza, G.L. and Wang, G.L. (1992) A Nuclear Factor Induced by Hypoxia via de Novo Protein Synthesis Binds to the Human Erythropoietin Gene Enhancer at a Site Required for Transcriptional Activation. Molecular and Cellular Biology, 12, 5447-5454.
https://doi.org/10.1128/mcb.12.12.5447-5454.1992
[7]  Saha, N., Koner, D. and Sharma, R. (2022) Environmental Hypoxia: A Threat to the Gonadal Development and Reproduction in Bony Fishes. Aquaculture and Fisheries, 7, 572-582.
https://doi.org/10.1016/j.aaf.2022.02.002
[8]  肖武汉. 低氧信号传导途径与鱼类低氧适应[J]. 中国科学:生命科学, 2014, 44(12): 1227-1235.
[9]  Hvas, M. and Oppedal, F. (2019) Physiological Responses of Farmed Atlantic Salmon and Two Cohabitant Species of Cleaner Fish to Progressive Hypoxia. Aquaculture, 512, Article ID: 734353.
https://doi.org/10.1016/j.aquaculture.2019.734353
[10]  陈世喜, 王鹏飞, 区又君, 温久福, 李加儿, 王雯, 谢木娇. 急性和慢性低氧胁迫对卵形鲳鲹幼鱼肝组织损伤和抗氧化的影响[J]. 动物学杂志, 2016, 51(6): 1049-1058.
[11]  常志成, 温海深, 张美昭, 李吉方, 李昀, 张凯强, 王伟, 刘阳, 田源, 王晓龙. 溶解氧水平对花鲈幼鱼氧化应激与能量利用的影响及生理机制[J]. 中国海洋大学学报(自然科学版), 2018, 48(7): 20-28.
[12]  Mandic, M., Todgham, A.E. and Richards, J.G. (2009) Mechanisms and Evolution of Hypoxia Tolerance in Fish. Proceedings of the Royal Society B: Biological Sciences, 276, 735-744.
https://doi.org/10.1098/rspb.2008.1235
[13]  Richards, J.G. (2009) Chapter 10. Metabolic and Molecular Respons-es of Fish to Hypoxia. In: Richards, J.G., Farrell, A.P. and Brauner, C.J., Eds., Fish Physiology, Academic Press, Bur-lington, 443-485.
https://doi.org/10.1016/S1546-5098(08)00010-1
[14]  Richards, J.G. (2011) Physiological, Behavioral and Bio-chemical Adaptations of Intertidal Fishes to Hypoxia. Journal of Experimental Biology, 214, 191-199.
https://doi.org/10.1242/jeb.047951
[15]  Li, M., Wang, X., Qi, C., Li, E., Du, Z., Qin, J.G. and Chen, L. (2018) Metabolic Response of Nile tilapia (Oreochromis niloticus) to Acute and Chronic Hypoxia Stress. Aquaculture, 495, 187-195.
https://doi.org/10.1016/j.aquaculture.2018.05.031
[16]  王晓雯, 朱华, 胡红霞, 马国庆. 低氧胁迫对西伯利亚鲟幼鱼生理状态的影响[J]. 水产科学, 2016, 35(5): 459-465.
[17]  王维政, 曾泽乾, 黄建盛, 郭志雄, 李洪娟, 陈刚. 低氧胁迫对军曹鱼幼鱼抗氧化、免疫能力及能量代谢的影响[J]. 广东海洋大学学报, 2020, 40(5): 12-18.
[18]  Hou, Z., Wen, H., Li, J., He, F., Li, Y. and Qi, X. (2020) Environmental Hypoxia Causes Growth Retarda-tion, Osteoclast Differentiation and Calcium Dyshomeostasis in Juvenile Rainbow Trout (Oncorhynchus mykiss). Science of the Total Environment, 705, Article ID: 135272.
https://doi.org/10.1016/j.scitotenv.2019.135272
[19]  徐愫. 不同水质条件下点带石斑鱼异常行为计算机视觉识别方法研究[D]: [硕士学位论文]. 天津: 天津农学院, 2016.
[20]  Diaz, R. and Rosenberg, R. (1995) Marine Benthic Hypoxia: A Review of Its Ecological Effects and the Be-havioural Response of Benthic Macrofauna. Oceanography and Marine Biology: An Annual Review, 33, 245-303.
[21]  Kramer, D.L. and McClure, M. (1982) Aquatic Surface Respiration, a Widespread Adaptation to Hypoxia in Tropical Freshwater Fishes. Environmental Biology of Fishes, 7, 47-55.
https://doi.org/10.1007/BF00011822
[22]  Urbina, M.A., Forster, M.E. and Glover, C.N. (2011) Leap of Faith: Voluntary Emersion Behaviour and Physiological Adaptations to Aerial Exposure in a Non-Aestivating Freshwater Fish in Response to Aquatic Hypoxia. Physiology & Behavior, 103, 240-247.
https://doi.org/10.1016/j.physbeh.2011.02.009
[23]  Harper, C. and Wolf, J.C. (2009) Morphologic Effects of the Stress Response in Fish. ILAR Journal, 50, 387-396.
https://doi.org/10.1093/ilar.50.4.387
[24]  曾姣, 王倩, 王亚冰, 彭士明, 陈润, 马凌波, 王翠华. 低氧及酸化胁迫对大黄鱼幼鱼离子调节与鳃组织结构的影响[J]. 应用生态学报, 2022, 33(2): 551-559.
[25]  凌晨. 鲢对低氧胁迫的机体和分子响应研究[D]: [硕士学位论文]. 上海: 上海海洋大学, 2021.
[26]  Matey, V., Iftikar, F.I., De, B.G., Scott, G.R., Sloman, K.A., Almeida-Val, V.M.F., Val, A.L. and Wood, C.M. (2011) Gill Morphology and Acute Hypoxia: Responses of Mitochondria-Rich, Pavement, and Mucous Cells in the Amazonian Oscar (Astronotus ocellatus) and the Rainbow Trout (Oncorhynchus mykiss), Two Species with Very Different Approaches to the Osmo-Respiratory Compromise. Canadian Journal of Zoology, 89, 307-324.
https://doi.org/10.1139/z11-002
[27]  Matey, V., Richards, J.G., Wang, Y., Wood, C.M., Rogers, J., Davies, R., Murray, B.W., Chen, X.Q., Du, J. and Brauner, C.J. (2008) The Effect of Hypoxia on Gill Morphology and Ionoregula-tory Status in the Lake Qinghai Scaleless Carp, Gymnocypris przewalskii. Journal of Experimental Biology, 211, 1063-1074.
https://doi.org/10.1242/jeb.010181
[28]  高云涛, 高云红, 李明月, 王嘉伟, 孟振, 关长涛, 贾玉东. 许氏平鲉低氧耐受能力及血液学和鳃组织学变化[J]. 水产学报, 2021: 1-11.
[29]  Bosch-Belmar, M., Giom,i F., Rinaldi, A., Mandich, A., Fuentes, V., Mirto, S., Sarà, G. and Piraino, S. (2016) Concurrent Environmental Stressors and Jellyfish Stings Impair Caged European Sea Bass (Dicentrarchus labrax) Physiological Performances. Scientific Reports, 6, Arti-cle No. 27929.
https://doi.org/10.1038/srep27929
[30]  Marques, I.J., Leito, J.T.D., Spaink, H.P., Testerink, J., Jaspers, R.T., Witte, F., van den Berg, S. and Bagowski, C.P. (2008) Transcriptome Analysis of the Response to Chronic Constant Hypoxia in Zebrafish Hearts. Journal of Comparative Physiology B, 178, 77-92.
https://doi.org/10.1007/s00360-007-0201-4
[31]  Anttila, K., Lewis, M., Prokkola, J.M., Kanerva, M., Sepp?nen, E., Kolari, I. and Nikinmaa, M. (2015) Warm Acclimation and Oxygen Depletion Induce Species-Specific Responses in Salmonids. Journal of Experimental Biology, 218, 1471-1477.
https://doi.org/10.1242/jeb.119115
[32]  McBryan, T.L., Healy, T.M., Haakons, K.L. and Schulte, P.M. (2016) Warm Acclimation Improves Hypoxia Tolerance in Fundulus heteroclitus. Journal of Experimental Biology, 219, 474-484.
https://doi.org/10.1242/jeb.133413
[33]  Landry, C.A., Steele, S.L., Manning, S. and Cheek, A.O. (2007) Long Term Hypoxia Suppresses Reproductive Capacity in the Estua-rine Fish, Fundulus grandis. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 148, 317-323.
https://doi.org/10.1016/j.cbpa.2007.04.023
[34]  Friesen, C.N., Aubin-Horth, N. and Chapman, L.J. (2012) The Effect of Hypoxia on Sex Hormones in an African Cichlid Pseudocrenilabrus multicolor victoriae. Compar-ative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 162, 22-30.
https://doi.org/10.1016/j.cbpa.2012.01.019
[35]  Dabrowski, K., Rinchard, J., Ottobre, J.S., Alcantara, F., Padilla, P., Ciereszko, A., De Jesus, M.J. and Kohler, C.C. (2003) Effect of Oxygen Saturation in Water on Reproductive Per-formances of Pacu Piaractus brachypomus. Journal of the World Aquaculture Society, 34, 441-449.
https://doi.org/10.1111/j.1749-7345.2003.tb00083.x
[36]  Bera, A., Chadha, N.K., Dasgupta, S., Chakravarty, S. and Sawant, P.B. (2020) Hypoxia-Mediated Inhibition of Cholesterol Synthesis Leads to Disruption of Nocturnal Sex Steroidogenesis in the Gonad of Koi Carp, Cyprinus carpio. Fish Physiol Biochem, 46, 2421-2435.
https://doi.org/10.1007/s10695-020-00887-5
[37]  Wu, R.S.S., Zhou, B.S., Randall, D.J., Woo, N.Y.S. and Lam, P.K.S. (2003) Aquatic Hypoxia Is an Endocrine Disruptor and Impairs Fish Reproduction. Environmental Science & Technology, 37, 1137-1141.
https://doi.org/10.1021/es0258327
[38]  Thomas, P., Rahman, M.S., Khan, I.A. and Kummer, J.A. (2007) Wide-spread Endocrine Disruption and Reproductive Impairment in an Estuarine Fish Population Exposed to Seasonal Hypoxia. Proceedings of the Royal Society B: Biological Sciences, 274, 2693-2702.
https://doi.org/10.1098/rspb.2007.0921
[39]  Shang, E.H.H., Yu, R.M.K. and Wu, R.S.S. (2006) Hypoxia Affects Sex Differentiation and Development, Leading to a Male-Dominated Population in Zebrafish (Danio rerio). Environ-mental Science & Technology, 40, 3118-3122.
https://doi.org/10.1021/es0522579
[40]  Thomas, P., Rahman, M.S., Kummer, J.A. and Lawson, S. (2006) Repro-ductive Endocrine Dysfunction in Atlantic Croaker Exposed to Hypoxia. Marine Environmental Research, 62, S249-S252.
https://doi.org/10.1016/j.marenvres.2006.04.031
[41]  Rizzo, E. and Bazzoli, N. (2020) Chapter 13. Reproduction and Embryogenesis. In: Baldisserotto, B., Urbinati, E.C. and Cyrino, J.E.P., Eds., Biology and Physiology of Freshwater Neotropical Fish, Academic Press, Cambridge, 287-313.
https://doi.org/10.1016/B978-0-12-815872-2.00013-0
[42]  Davey, A.J.H. and Jellyman, D.J. (2005) Sex Determi-nation in Freshwater Eels and Management Options for Manipulation of Sex. Reviews in Fish Biology and Fisheries, 15, 37-52.
https://doi.org/10.1007/s11160-005-7431-x
[43]  楚璐萌, 田子颖, 崔蕊, 吴娇, 于海川. 低氧对斑马鱼胚胎发育和红细胞生成的抑制作用[J]. 中国实验动物学报, 2021, 29(1): 1-8.
[44]  Shi, X. and Zhou, B. (2010) The Role of Nrf2 and MAPK Pathways in PFOS-Induced Oxidative Stress in Zebrafish Embryos. Toxicological Sciences, 115, 391-400.
https://doi.org/10.1093/toxsci/kfq066
[45]  Canli, E.G. and Canli, M. (2015) Low Water Conductivi-ty Increases the Effects of Copper on the Serum Parameters in Fish (Oreochromis niloticus). Environmental Toxicology and Pharmacology, 39, 606-613.
https://doi.org/10.1016/j.etap.2014.12.019
[46]  Gracey, A.Y., Lee, T., Higashi, R.M. and Fan, T. (2011) Hypox-ia-Induced Mobilization of Stored Triglycerides in the Euryoxic Goby Gillichthys mirabilis. Journal of Experimental Bi-ology, 214, 3005-3012.
https://doi.org/10.1242/jeb.059907
[47]  刘韬, 齐明, 高阳, 刘其根. 青田田鱼幼鱼脑组织在急性低氧胁迫复氧恢复的转录组分析[J]. 上海海洋大学学报, 2022: 1-15.
[48]  Mahfouz, M.E., Hegazi, M.M., El-Magd, M.A. and Kasem, E.A. (2015) Metabolic and Molecular Responses in Nile tilapia, Oreochromis niloticus during Short and Pro-longed Hypoxia. Marine and Freshwater Behaviour and Physiology, 48, 319-340.
https://doi.org/10.1080/10236244.2015.1055915
[49]  高云涛, 高云红, 李明月, 赵侠, 李文升, 庞尊方, 关长涛, 贾玉东. 斑石鲷低氧耐受能力及血液生理生化指标变化研究[J]. 渔业科学进展, 2022, 43(6): 79-88.
[50]  张曦, 付世建, 彭姜岚, 曹振东. 急性低氧对鲫鱼幼鱼血液基础指标的影响[J]. 重庆师范大学学报(自然科学版), 2011, 28(4): 19-22.
[51]  李欣茹. 低氧胁迫对暗纹东方鲀能量代谢、血液指标及基因表达的影响[D]: [硕士学位论文]. 南京: 南京师范大学, 2018.
[52]  Pan, S., Chiang, W. and Chen, Y. (2021) The Journey from Erythropoietin to 2019 Nobel Prize: Focus on Hypoxia-Inducible Factors in the Kidney. Journal of the Formosan Medical Association, 120, 60-67.
https://doi.org/10.1016/j.jfma.2020.06.006
[53]  Nikinmaa, M. and Rees, B. (2005) Oxygen-Dependent Gene Ex-pression in Fish. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 288, R1079-R1090.
https://doi.org/10.1152/ajpregu.00626.2004
[54]  Mylonis, I., Simos, G. and Paraskeva, E. (2019) Hypoxia-Inducible Factors and the Regulation of Lipid Metabolism. Cells, 8, 214.
https://doi.org/10.3390/cells8030214
[55]  Poon, E., Harris, A.L. and Ashcroft, M. (2009) Targeting the Hypox-ia-Inducible Factor (HIF) Pathway in Cancer. Expert Reviews in Molecular Medicine, 11, e26.
https://doi.org/10.1017/S1462399409001173
[56]  Keith, B., Johnson, R.S. and Simon, M.C. (2011) HIF1α and HIF2α: Sibling Rivalry in Hypoxic Tumour Growth and Progression. Nature Reviews Cancer, 12, 9-22.
https://doi.org/10.1038/nrc3183
[57]  Duan, C. (2016) Hypoxia-Inducible Factor 3 Biology: Complexities and Emerging Themes. American Journal of Physiology-Cell Physiology, 310, C260-C269.
https://doi.org/10.1152/ajpcell.00315.2015
[58]  Kaelin, W.J. and Ratcliffe, P.J. (2008) Oxygen Sensing by Meta-zoans: The Central Role of the HIF Hydroxylase Pathway. Molecular Cell, 30, 393-402.
https://doi.org/10.1016/j.molcel.2008.04.009
[59]  Lee, J.W., Bae, S.H., Jeong, J.W., Kim, S.H. and Kim, K.W. (2004) Hypoxia-Inducible Factor (HIF-1) Alpha: Its Protein Stability and Biological Functions. Experimental & Molecu-lar Medicine, 36, 1-12.
https://doi.org/10.1038/emm.2004.1
[60]  Majmundar, A.J., Wong, W.J. and Simon, M.C. (2010) Hypox-ia-Inducible Factors and the Response to Hypoxic Stress. Molecular Cell, 40, 294-309.
https://doi.org/10.1016/j.molcel.2010.09.022
[61]  Ravenna, L., Salvatori, L. and Russo, M.A. (2016) HIF3α: The Little We Know. The FEBS Journal, 283, 993-1003.
https://doi.org/10.1111/febs.13572
[62]  Aragones, J., Fraisl, P., Baes, M. and Carmeliet, P. (2009) Oxygen Sen-sors at the Crossroad of Metabolism. Cell Metabolism, 9, 11-22.
https://doi.org/10.1016/j.cmet.2008.10.001
[63]  Jewell, U.R., Kvietikova, I., Scheid, A., Bauer, C., Wenger, R.H. and Gassmann, M. (2001) Induction of HIF-1α in Response to Hypoxia Is Instantaneous. The FASEB Journal, 15, 1312-1314.
https://doi.org/10.1096/fj.00-0732fje
[64]  Srivastava, A., George, J. and Karuturi, R.K.M. (2019) Transcriptome Analysis. In: Ranganathan, S., Gribskov, M., Nakai, K. and Sch?nbach, C., Eds., Encyclopedia of Bioin-formatics and Computational Biology, Academic Press, Oxford, 792-805.
https://doi.org/10.1016/B978-0-12-809633-8.20161-1
[65]  Mu, Y., Li, W., Wei, Z., He, L., Zhang, W. and Chen, X. (2020) Transcriptome Analysis Reveals Molecular Strategies in Gills and Heart of Large Yellow Croaker (Larimich-thys crocea) under Hypoxia Stress. Fish & Shellfish Immunology, 104, 304-313.
https://doi.org/10.1016/j.fsi.2020.06.028
[66]  Gao, C., Cai, X., Ma, L. and Li, C. (2022) Identification of mRNA-miRNA-lncRNA Regulatory Network Associated with the Immune Response to Aeromonas salmonicides Infec-tion in the Black Rockfish (Sebastes schlegelii). Developmental & Comparative Immunology, 130, Article ID: 104357.
https://doi.org/10.1016/j.dci.2022.104357
[67]  Cao, M., Zhang, M., Yang N., Fu, Q., Su, B., Zhang, X., Li, Q., Yan, X., Thongda, W. and Li, C. (2020) Full Length Transcriptome Profiling Reveals Novel Immune-Related Genes in Black Rockfish (Sebastes schlegelii). Fish & Shellfish Immunology, 106, 1078-1086.
https://doi.org/10.1016/j.fsi.2020.09.015
[68]  Kong, X., Wang, X., Li, M., Song, W., Huang, K., Zhang, F., Zhang, Q., Qi, J. and He, Y. (2021) Establishment of Myoblast Cell Line and Identification of Key Genes Regulating Myoblast Differentiation in a Marine Teleost, Sebastes schlegelii. Gene, 802, Article ID: 145869.
https://doi.org/10.1016/j.gene.2021.145869
[69]  Lyu, L., Wen, H., Li, Y., Li, J., Zhao, J., Zhang, S., Song, M. and Wang, X. (2018) Deep Transcriptomic Analysis of Black Rockfish (Sebastes schlegelii) Provides New Insights on Re-sponses to Acute Temperature Stress. Scientific Reports, 8, Article No. 9113.
https://doi.org/10.1038/s41598-018-27013-z
[70]  Feng, C., Li, X., Sha, H., Luo, X., Zou, G. and Liang, H. (2022) Comparative Transcriptome Analysis Provides Novel Insights into the Molecular Mechanism of the Silver Carp (Hy-pophthalmichthys molitrix) Brain in Response to Hypoxia Stress. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 41, Article ID: 100951.
https://doi.org/10.1016/j.cbd.2021.100951
[71]  Lu, X., Chen, H., Qian, X. and Gui, J. (2020) Transcriptome Analysis of Grass Carp (Ctenopharyngodon idella) between Fast- and Slow-Growing Fish. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 35, Article ID: 100688.
https://doi.org/10.1016/j.cbd.2020.100688
[72]  Liao, X., Cheng, L., Xu, P., Lu, G., Wachholtz, M., Sun, X. and Chen, S. (2013) Transcriptome Analysis of Crucian Carp (Carassius auratus), an Important Aquaculture and Hypox-ia-Tolerant Species. PLOS ONE, 8, e62308.
https://doi.org/10.1371/journal.pone.0062308
[73]  Li, L., Zhang, Z. and Huang, Y. (2020) Integrative Transcrip-tome Analysis and Discovery of Signaling Pathways Involved in the Protective Effects of Curcumin against Oxidative Stress in Tilapia Hepatocytes. Aquatic Toxicology, 224, Article ID: 105516.
https://doi.org/10.1016/j.aquatox.2020.105516
[74]  冯龙, 马云云, 曹珊, 李晓娟, 王媛媛, 陈肖楠, 孙倩倩, 吴建博, 赵国强. 一种新型双荧光素酶报告基因表达载体的构建[J]. 郑州大学学报(医学版), 2018, 53(1): 38-41.
[75]  耿德玉, 原媛, 郭华荣. 双荧光素酶报告基因系统的应用研究进展[J]. 科技资讯, 2012(21): 1.
[76]  Doran, D.M., Kulkarni-Datar, Cool, D.R. and Brown, T.L. (2011) Hypoxia Activates Constitutive Luciferase Reporter Constructs. Biochimie, 93, 361-368.
https://doi.org/10.1016/j.biochi.2010.10.009
[77]  Abboud, E.R., Coffelt, S.B., Figueroa, Y.G., Zwezdaryk, K.J., Nelson, A.B., Sullivan, D.E., Morris, C.B., Tang, Y., Beckman, B.S. and Scandurro, A.B. (2007) Integrin-Linked Kinase: A Hypoxia-Induced Anti-Apoptotic Factor Exploited by Cancer Cells. International Journal of Oncology, 30, 113-122.
https://doi.org/10.3892/ijo.30.1.113
[78]  Cosgrave, N., Hill, A.D.K. and Young, L.S. (2006) Growth Factor-Dependent Regulation of Survivin by c-myc in Human Breast Cancer. Journal of Molecular Endocrinology, 37, 377-390.
https://doi.org/10.1677/jme.1.02118
[79]  Kim, S.H., Hwang, C.I., Juhnn, Y.S., Lee, J.H., Park, W.Y. and Song, Y.S. (2007) GADD153 Mediates Celecoxib-Induced Apoptosis in Cervical Cancer Cells. Carcinogenesis, 28, 223-231.
https://doi.org/10.1093/carcin/bgl227
[80]  Maor, S., Mayer, D., Yarden, R.I., Lee, A.V., Sarfstein, R., Werner, H. and Papa, M.Z. (2006) Estrogen Receptor Regulates Insulin-Like Growth Factor-I Receptor Gene Expression in Breast Tumor Cells: Involvement of Transcription Factor Sp1. Journal of Endocrinology, 191, 605-612.
https://doi.org/10.1677/joe.1.07016
[81]  王婷. 长牡蛎低氧信号通路分子作用机制研究[D]: [博士学位论文]. 北京: 中国科学院大学(中国科学院海洋研究所), 2017.
[82]  董小敬. 虹鳟、花鲈和大黄鱼Δ6脂肪酸去饱和酶调控差异的研究[D] :[博士学位论文]. 青岛: 中国海洋大学, 2015.
[83]  Cai, X., Zhou, Z., Zhu, J., Liao, Q., Zhang, D., Liu, X., Wang, J., Ouyang, G. and Xiao, W. (2020) Zebrafish Hif3α Modulates Eryth-ropoiesis via Regulation of gata1 to Facilitate Hypoxia Tolerance. Development, 147, dev185116.
https://doi.org/10.1242/dev.185116
[84]  Orlando, I., Lafleur, V.N., Storti, F., Spielmann, P., Crowther, L., San-tambrogio, S., Schodel, J., Hoogewijs, D., Mole, D.R. and Wenger, R.H. (2020) Distal and Proximal Hypoxia Response Elements Cooperate to Regulate Organ-Specific Erythropoietin Gene Expression. Haematologica, 105, 2774-2784.
https://doi.org/10.3324/haematol.2019.236406
[85]  Jackson, V. (1978) Studies on Histone Organization in the Nu-cleosome Using Formaldehyde as a Reversible Cross-Linking Agent. Cell, 15, 945-954.
https://doi.org/10.1016/0092-8674(78)90278-7
[86]  Collas, P. (2010) The Current State of Chromatin Immunopre-cipitation. Molecular Biotechnology, 45, 87-100.
https://doi.org/10.1007/s12033-009-9239-8
[87]  王泓力, 焦雨铃. 染色质免疫共沉淀实验方法[J]. 植物学报, 2020, 55(4): 475-480.
[88]  李洪璇. 转录因子Sp1在心血管疾病中的作用及机制研究[D]: [博士毕业论文]. 济南: 山东大学, 2019.
[89]  姚苏梅. GRK6基因在肺腺癌中的作用及机制研究[D]: [博士毕业论文]. 苏州: 苏州大学, 2019.
[90]  白晓彦. KLF9下调MMP9表达抑制乳腺癌转移的分子机制[D]: [博士毕业论文]. 大连: 大连理工大学, 2017.
[91]  邸研博. SND1促进TGFβ信号传导及乳腺癌转移的分子机制[D]: [博士毕业论文]. 天津: 天津医科大学, 2017.
[92]  戴生飞. Dmrt1和Foxl3在尼罗罗非鱼性别分化和生殖细胞命运决定中的功能研究[D]: [博士毕业论文]. 重庆: 西南大学, 2021.
[93]  姜蓬垒. 斑马鱼细胞低温驯化中的表观遗传调控机制研究[D]: [博士毕业论文]. 上海: 上海海洋大学, 2018.
[94]  唐耀浩. 转录因子Sox30在尼罗罗非鱼精子发生中的功能及作用机制研究[D]: [硕士学位论文]. 重庆: 西南大学, 2020.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133