|
复杂三维流形两类穿孔环面和的亏格
|
Abstract:
本文从某些三维流形穿孔环面和是否具有亏格可加性出发,通过三维流形组合拓扑的研究方法和技巧,给出了某些可定向闭曲面加厚两类n(n≥3)穿孔环面和的亏格,进一步得到某些复杂三维流形两类n(n≥3)穿孔环面和的亏格。
In this paper, starting from whether the punctured torus sum of some 3-manifolds is additive, through the methods and techniques of hybrid topology of 3-manifolds, it gives the genus of two classes of n-punctured n(n≥3) torus sum of some thickened orientable closed surfaces, and then it gets the genus of two classes of n-punctured n(n≥3) torus sum of some complicated 3-main- folds.
[1] | Kobayashi, T. and Qiu, R.F. (2008) The Amalgamation of High Distance Heegaard Splittings Is Always Efficient. Mathematische Annalen, 341, 707-715. https://doi.org/10.1007/s00208-008-0214-7 |
[2] | Wang, S.X. and Ni, N. (2014) The Pants Sum of High Distance Heegaard Splittings. Journal of Mathematical Research with Applications, 34, 216-222. |
[3] | 王霄. 可定向闭曲面加厚的四、五穿孔球面和的亏格可加性[D]: [硕士学位论文]. 大连: 辽宁师范大学, 2016. |
[4] | 冷健. 复杂三维流形两类穿孔球面和的亏格可加性[D]: [硕士学位论文]. 大连: 辽宁师范大学, 2017. |
[5] | Qiu, R.F., Wang, S.C. and Zhang, M.X. (2010) The Heegaard Genera of Surface Sums. Topology and Its Applications, 157, 1593-1601. https://doi.org/10.1016/j.topol.2010.02.015 |
[6] | Hempel, J. (1976) 3-Manifolds. Princeton University Press, Princeton. |
[7] | Jaco, W. (1980) Lectures on Three-Manifold Topology. Regional Confer-ence Series in Mathematics 43, Amer Math Soc., Providence. |