%0 Journal Article %T 复杂三维流形两类穿孔环面和的亏格
Genus of Two Classes of Punctured Torus Sum of Complicated 3-Manifolds %A 王树新 %A 徐诚蕙 %A 陶金 %J Advances in Applied Mathematics %P 8869-8873 %@ 2324-8009 %D 2022 %I Hans Publishing %R 10.12677/AAM.2022.1112934 %X 本文从某些三维流形穿孔环面和是否具有亏格可加性出发,通过三维流形组合拓扑的研究方法和技巧,给出了某些可定向闭曲面加厚两类n(n≥3)穿孔环面和的亏格,进一步得到某些复杂三维流形两类n(n≥3)穿孔环面和的亏格。
In this paper, starting from whether the punctured torus sum of some 3-manifolds is additive, through the methods and techniques of hybrid topology of 3-manifolds, it gives the genus of two classes of n-punctured n(n≥3) torus sum of some thickened orientable closed surfaces, and then it gets the genus of two classes of n-punctured n(n≥3) torus sum of some complicated 3-main- folds. %K 复杂三维流形,亏格,穿孔环面,曲面和
Complicated 3-Manifolds %K Genus %K Punctured Torus %K Surfaces Sum %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=59527