全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Tumor Necrosis Factor-Alpha (TNF)-308G/A and Interleukin 8(IL-8)-251C/T Polymorphisms in Pulmonary Tuberculosis Patients from Congo

DOI: 10.4236/oji.2023.131001, PP. 1-13

Keywords: Pulmonary Tuberculosis, Cytokine Polymorphism, Tumor Necrosis Factor-Alpha, Interleukin-8, PCR-RFLP

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background: Tuberculosis (TB) is one of the world’s deadliest infectious diseases. Tumor necrosis factor-Alpha (TNF-α) and Interleukin 8 (IL-8) are involved in the pathogenesis of pulmonary TB (PTB). However, the contribution of polymorphisms of these cytokines to PTB susceptibility needed more investigation across geographic regions and ethnic groups. Purpose: The aim of this study was to investigate the association of the TNF-α-308 G/A and IL-8-251T/A polymorphisms with PTB risk in the Congolese population. Methods: This case-control study included 150 PTB patients and 160 control subjects. Blood samples were collected from all participants and were used for the TNF-α-308 G/A and IL-8-251T/A genotyping by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. Odds ratios (OR) were calculated to estimate the potential polymorphism associations. A P level of < 0.05 was considered significant. Results: A significant difference was found between PTB patients and controls regarding the TNF-α-308AA genotype (P = 0.035) distribution. Moreover, this genotype was associated with risk to TB (OR = 7.19, 95% CI = 0.85 - 60.65, P = 0.035). The A allele was significantly more frequent in PTB patients than in controls, and was associated with risk to PTB (OR = 1.68, 95% CI = 1.05 - 2.68, P = 0.

References

[1]  Harding, E. (2020) WHO Global Progress Report on Tuberculosis Elimination. The Lancet Respiratory Medicine, 8, Article No. 19.
https://doi.org/10.1016/S2213-2600(19)30418-7
[2]  Okemba-Okombi, F.H., Ossibi-Ibara, B., Bemba, E.L.P. and Bopaka, R.G. (2017) Profil épidémiologique de la tuberculose au Congo Brazzaville de 2010 à 2015. Revue des Maladies Respiratoires, 34, A291-A292.
https://doi.org/10.1016/j.rmr.2016.10.719
[3]  Alene, K.A., Wangdi, K. and Clements, A.C.A. (2020) Impact of the COVID-19 Pandemic on Tuberculosis Control: An Overview. Tropical Medicine and Infectious Disease, 5, Article No. 123.
https://doi.org/10.3390/tropicalmed5030123
[4]  Sharma, S.K., Mohan, A. and Kohli, M. (2021) Extrapulmonary Tuberculosis. Expert Review of Respiratory Medicine, 15, 931-948.
https://doi.org/10.1080/17476348.2021.1927718
[5]  Holmes, K.K., Bertozzi, S., Bloom, B.R. and Jha, P. (2017) Disease Control Priorities, Third Edition (Volume 6): Major Infectious Diseases. The World Bank, Washington DC.
https://doi.org/10.1596/978-1-4648-0524-0
[6]  Le Morvan, V., Formento, J.L., Milano, G., Bonnet, J. and Robert, J. (2005) Techniques de recherche des polymorphismes génétiques. Oncologie, 7, 7-16.
https://doi.org/10.1007/s10269-005-0146-8
[7]  Harishankar, M., Selvaraj, P. and Bethunaickan, R. (2018) Influence of Genetic Polymorphism towards Pulmonary Tuberculosis Susceptibility. Frontiers in Medicine, 5, Article No. 213.
https://doi.org/10.3389/fmed.2018.00213
[8]  O’Shea, J.J., Gadina, M. and Siegel, R.M. (2019) Cytokines and Cytokine Receptors. In: Rich, R.R., et al., Eds., Clinical Immunology, Elsevier, Amsterdam, 127-155.e1.
https://doi.org/10.1016/B978-0-7020-6896-6.00009-0
[9]  Gordeeva, L.A., Mun, S.A., Voronina, E.N., Polenok, E.G., Sokolova, E.A., Verzhbitskaya, N.E., et al. (2021) Association between Cytokine Gene Polymorphisms and Breast Cancer in Postmenopausal Women. Advances in Gerontology, 11, 44-52.
https://doi.org/10.1134/S2079057021010367
[10]  Osman, A.E., Brema, I., AlQurashi, A., Al-Jurayyan, A., Bradley, B. and Hamza, M.A. (2022) Single Nucleotide Polymorphism rs 2070874 at Interleukin-4 Is Associated with Increased Risk of Type 1 Diabetes Mellitus Independently of Human Leukocyte Antigens. International Journal of Immunopathology and Pharmacology, 36, Article ID: 3946320221090330.
https://doi.org/10.1177/03946320221090330
[11]  Wang, Q., Zhan, P., Qiu, L.X., Qian, Q. and Yu, L.K. (2012) TNF-308 Gene Polymorphism and Tuberculosis Susceptibility: A Meta-Analysis Involving 18 Studies. Molecular Biology Reports, 39, 3393-400.
https://doi.org/10.1007/s11033-011-1110-x
[12]  Yu, Z., Wit, W., Xiong, L. and Cheng, Y. (2019) Associations of Six Common Functional Polymorphisms in Interleukins with Tuberculosis: Evidence from a Meta-Analysis. Pathogens and Disease, 77, 53.
https://doi.org/10.1093/femspd/ftz053
[13]  Jang, D., Lee, A.H., Shin, H.Y., Song, H.R., Park, J.H., Kang, T.B., et al. (2021) The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. International Journal of Molecular Sciences, 22, 2719.
https://doi.org/10.3390/ijms22052719
[14]  Clay, H., Volkman, H.E. and Ramakrishnan, L. (2008) Tumor Necrosis Factor Signaling Mediates Resistance to Mycobacteria by Inhibiting Bacterial Growth and Macrophage Death. Immunity, 29, 283-294.
https://doi.org/10.1016/j.immuni.2008.06.011
[15]  Chakravarty, S.D., Zhu, G., Tsai, M.C., Mohan, V.P., Marino, S., Kirschner, D.E., et al. (2008) Tumor Necrosis Factor Blockade in Chronic Murine Tuberculosis Enhances Granulomatous Inflammation and Disorganizes Granulomas in the Lungs. Infection and Immunity, 76, 916-926.
https://doi.org/10.1128/IAI.01011-07
[16]  Silva, D.A.A., Silva, M.V., Barros, C.C.O., Alexandre, P.B.D., Timóteo, R.P., Catarino, J.S., et al. (2018) TNF-α Blockade Impairs in Vitro Tuberculous Granuloma Formation and Down Modulate Th1, Th17 and Treg Cytokines. PLOS ONE, 13, e0194430.
https://doi.org/10.1371/journal.pone.0194430
[17]  Krupa, A., Fol, M., Dziadek, B.R., Kepka, E., Wojciechowska, D., Brzostek, A., et al. (2015) Binding of CXCL8/IL-8 to Mycobacterium tuberculosis Modulates the Innate Immune Response. Mediators of Inflammation, 2015, Article ID: 124762.
https://doi.org/10.1155/2015/124762
[18]  Robert, M. and Miossec, P. (2021) Reactivation of Latent Tuberculosis with TNF Inhibitors: Critical Role of the Beta 2 Chain of the IL-12 Receptor. Cellular & Molecular Immunology, 18, 1644-1651.
https://doi.org/10.1038/s41423-021-00694-9
[19]  Duarte, I., Santos, A., Sousa, H., Catarino, R., Pinto, D., Matos, A., et al. (2005) G-308A TNF-α Polymorphism Is Associated with an Increased Risk of Invasive Cervical Cancer. Biochemical and Biophysical Research Communications, 334, 588-592.
https://doi.org/10.1016/j.bbrc.2005.06.137
[20]  Vairaktaris, E., Yapijakis, C., Serefoglou, Z., Derka, S., Vassiliou, S., Nkenke, E., et al. (2007) The Interleukin-8 (-251A/T) Polymorphism Is Associated with Increased Risk for Oral Squamous Cell Carcinoma. European Journal of Surgical Oncology (EJSO), 33, 504-507.
https://doi.org/10.1016/j.ejso.2006.11.002
[21]  Gauba, K., Gupta, S., Shekhawat, J., Sharma, P., Yadav, D. and Banerjee, M. (2021) Immunomodulation by Epigenome Alterations in Mycobacterium tuberculosis Infection. Tuberculosis, 128, Article ID: 102077.
https://doi.org/10.1016/j.tube.2021.102077
[22]  Abel, L., Fellay, J., Haas, D.W., Schurr, E., Srikrishna, G., Urbanowski, M., et al. (2018) Genetics of Human Susceptibility to Active and Latent Tuberculosis: Present Knowledge and Future Perspectives. The Lancet Infectious Diseases, 18, e64-e75.
https://doi.org/10.1016/S1473-3099(17)30623-0
[23]  Hashim, H.O. and Al-Shuhaib, M.B. (2019) Exploring the Potential and Limitations of PCR-RFLP and PCR-SSCP for SNP Detection: A Review. Journal of Applied Biotechnology Reports, 6, 137-144.
https://doi.org/10.29252/JABR.06.04.02
[24]  El-Tahan, R.R., Ghoneim, A.M. and El-Mashad, N. (2016) TNF-α Gene Polymorphisms and Expression. SpringerPlus, 5, Article No. 1508.
https://doi.org/10.1186/s40064-016-3197-y
[25]  Kafeero, H.M., Ndagire, D., Ocama, P., Walusansa, A. and Sendagire, H. (2022) Tumor Necrosis Factor-α —863C/A and 1031T/C Single Nucleotide Polymorphic Sites (SNPs) May Be Putative Markers of HBV Disease Prognosis among Caucasoids: Evidence from a Systematic Review with Meta-Analysis. Gene Reports, 26, Article ID: 101486.
https://doi.org/10.1016/j.genrep.2021.101486
[26]  Guo, X., Li, C., Wu, J., Mei, Q., Liu, C., Sun, W., et al. (2019) The Association of TNF-α —308G/A and —238G/A Polymorphisms with Type 2 Diabetes Mellitus: A Meta-Analysis. Bioscience Reports, 39, BSR20191301.
https://doi.org/10.1042/BSR20191301
[27]  Verma, H.K., Merchant, N. and Bhaskar, L.V.K.S. (2020) Tumor Necrosis Factor-Alpha Gene Promoter (TNF-α G-308A) Polymorphisms Increase the Risk of Hepatocellular Carcinoma in Asians: A Meta-Analysis. Critical Reviews in Oncogenesis, 25, 11-20.
https://doi.org/10.1615/CritRevOncog.2020034846
[28]  Ahmed, A.A., Rasheed, Z., Salem, T., Al-Dhubaibi, M.S., Al Robaee, A.A. and Alzolibani, A.A. (2020) TNF-α —308G/A and IFN-γ +874A/T Gene Polymorphisms in Saudi Patients with Cutaneous Leishmaniasis. BMC Medical Genetics, 21, Article No. 104.
https://doi.org/10.1186/s12881-020-01043-9
[29]  Hu, Y., Wu, L., Li, D., Zhao, Q., Jiang, W. and Xu, B. (2015) Association between Cytokine Gene Polymorphisms and Tuberculosis in a Chinese Population in Shanghai: A Case-Control Study. BMC Immunology, 16, Article No. 8.
https://doi.org/10.1186/s12865-015-0071-6
[30]  Mabunda, N., Alvarado-Arnez, L.E., Vubil, A., Mariamo, A., Pacheco, A.G., Jani, I.V., et al. (2015) Gene Polymorphisms in Patients with Pulmonary Tuberculosis from Mozambique. Molecular Biology, 42, 71-76.
https://doi.org/10.1007/s11033-014-3741-1
[31]  Yi, Y.X., Han, J.B., Zhao, L., Fang, Y., Zhang, Y.F. and Zhou, G.Y. (2015) Tumor Necrosis Factor Alpha Gene Polymorphism Contributes to Pulmonary Tuberculosis Susceptibility: Evidence from a Meta-Analysis. International Journal of Clinical and Experimental Medicine, 8, 20690-20700.
[32]  Ben-Selma, W., Harizi, H. and Boukadida, J. (2011) Association of TNF-α and IL-10 Polymorphisms with Tuberculosis in Tunisian Populations. Microbes and Infection, 13, 837-843.
https://doi.org/10.1016/j.micinf.2011.04.009
[33]  Ma, X., Reich, R.A., Wright, J.A., Tooker, H.R., Teeter, L.D., Musser, J.M., et al. (2003) Association between Interleukin-8 Gene Alleles and Human Susceptibility to Tuberculosis Disease. The Journal of Infectious Diseases, 188, 349-355.
https://doi.org/10.1086/376559
[34]  Liu, H., Mao, P., Xie, C., Xie, W., Wang, M. and Jiang, H. (2015) Association between Interleukin 8-251T/A and +781C/T Polymorphisms and Glioma Risk. Diagnostic Pathology, 10, Article No. 138.
https://doi.org/10.1186/s13000-015-0378-x
[35]  Czepiel, J., Biesiada, G., Drózdz, M., Gdula-Argasińska, J., Zurańska, J., Marchewka, J., et al. (2018) The Presence of IL-8 +781 T/C Polymorphism Is Associated with the Parameters of Severe Clostridium difficile Infection. Microbial Pathogenesis, 114, 281-285.
https://doi.org/10.1016/j.micpath.2017.11.066
[36]  Chen, J. and Ma, A. (2020) Associations of Polymorphisms in Interleukins with Tuberculosis: Evidence from a Meta-Analysis. Immunology Letters, 217, 1-6.
https://doi.org/10.1016/j.imlet.2019.10.012

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133