全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

对流扩散特征值问题的DG有限元方法
The DG Finite Element Method for Convection-Diffusion Eigenvalue Problems

DOI: 10.12677/IJFD.2022.104005, PP. 46-55

Keywords: 对流扩散特征值,DG方法,先验误差
Convection-Diffusion Eigenvalue
, Discontinuous Galerkin Method, Priori Error Estimate

Full-Text   Cite this paper   Add to My Lib

Abstract:

对流扩散方程作为偏微分方程一个很重要的分支,在很多的领域都有着广泛的应用,如流体力学、气体动力学等。由于对流扩散方程很难通过解析的方法得到解析解,所以通过各种数值方法来求解对流扩散方程在数值分析中占有很重要的地位。本文研究了对流扩散特征值问题的间断伽辽金有限元法,并给出了误差估计。
Convection-diffusion equations are an important class of partial differential equations that arise in many scientific fields including fluid mechanics, gas dynamics and so on. Since these equations normally have no closed form analytical solutions, it is very important to have accurate numerical approximations. In this paper, we study the discontinuous Ga-lerkin finite element method for convection-diffusion eigenvalue problems, and we present error estimates.

References

[1]  杜莹玉, 韩家宇. 对流扩散特征值问题的Crouzeix-Raviart元二网格离散方案. 贵州师范大学学报 (自然科学版), 2021, 39(6): 8-12.
[2]  Li, Y., Bi, H. and Yang, Y. (2022) The a Priori and a Posteriori Error Estimates of DG Method for the Steklov Eigenvalue Problem in Inverse Scattering. Journal of Scientific Computing, 91, Article No: 20.
https://doi.org/10.1007/s10915-022-01775-1
[3]  Carstensen, C., Gedicke, J., Mehrmann, V. and Miedlar, A. (2011) An Adaptive Homotopy Approach for Non-Selfadjoint Eigenvalue Problems. Numerische Mathematik, 119, 557-583.
https://doi.org/10.1007/s00211-011-0388-x
[4]  Cockburn, B., Karniadakis, G.E. and Shu, C.W. (2012) Discon-tinuous Galerkin Methods: Theory, Computation and Applications (Vol. 11). Springer Publishing Company, New York.
[5]  Dong, G., Guo, H. and Shi, Z. (2020) Discontinuous Galerkin Methods for the Laplace-Beltrami Operator on Point Cloud. arXiv preprint arXiv: 2012.15433.
[6]  Zeng, Y. and Wang, F. (2017) A posteriori Error Estimates for a Discontinuous Galerkin Approximation of Steklov Eigenvalue Problems. Applications of Mathematics, 62, 243-267.
https://doi.org/10.21136/AM.2017.0115-16
[7]  Meng, J. and Mei, L. (2020) Discontinuous Galerkin Methods of the Non-Selfadjoint Steklov Eigenvalue Problem in Inverse Scattering. Applied Mathematics and Computation, 381, Ar-ticle ID: 125307.
https://doi.org/10.1016/j.amc.2020.125307

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133