%0 Journal Article %T 对流扩散特征值问题的DG有限元方法
The DG Finite Element Method for Convection-Diffusion Eigenvalue Problems %A 段丽梅 %A 张云飞 %J International Journal of Fluid Dynamics %P 46-55 %@ 2328-0549 %D 2022 %I Hans Publishing %R 10.12677/IJFD.2022.104005 %X 对流扩散方程作为偏微分方程一个很重要的分支,在很多的领域都有着广泛的应用,如流体力学、气体动力学等。由于对流扩散方程很难通过解析的方法得到解析解,所以通过各种数值方法来求解对流扩散方程在数值分析中占有很重要的地位。本文研究了对流扩散特征值问题的间断伽辽金有限元法,并给出了误差估计。
Convection-diffusion equations are an important class of partial differential equations that arise in many scientific fields including fluid mechanics, gas dynamics and so on. Since these equations normally have no closed form analytical solutions, it is very important to have accurate numerical approximations. In this paper, we study the discontinuous Ga-lerkin finite element method for convection-diffusion eigenvalue problems, and we present error estimates. %K 对流扩散特征值,DG方法,先验误差
Convection-Diffusion Eigenvalue %K Discontinuous Galerkin Method %K Priori Error Estimate %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=58883