|
一氧化氮合酶与缺血缺氧性视网膜病变
|
Abstract:
缺血、缺氧是糖尿病视网膜病变(diabetic retinopathy, DR)、视网膜静脉阻塞(retinal vein occlusion, RVO)、高海拔视网膜病变(high altitude retinopathy, HAR)和年龄相关性黄斑病变(Age-related Macular Degeneration, AMD)及早产儿视网膜病变(retinopathy of prematurity, ROP)等常见视网膜病变的重要病理生理因素。近年来,关于缺血缺氧性视网膜病变机制的研究热点集中于一氧化氮合酶(Nitric oxide synthases, NOS)。本文主要从NOS在不同种类缺血、缺氧性视网膜病变中的作用机制角度进行综述。
Ischemia and hypoxia are important pathophysiological factors of common retinopathy of diabetic retinopathy (DR), retinal vein occlusion (RVO) and high altitude retinopathy retinopathy (HAR), Age-related Macular Degeneration (AMD) and retinopathy of prematurity ROP), etc. In recent years, the research focus on the mechanism of ischemic hypoxic retinopathy is on Nitric oxide synthases (NOS). This article mainly reviews the mechanism of NOS in different kinds of ischemic and hypoxic retinopathy.
[1] | Zaitoun, I.S., Shahi, P.K., Suscha, A., et al. (2021) Hypoxic-Ischemic Injury Causes Functional and Structural Neuro-vascular Degeneration in the Juvenile Mouse Retina. Scientific Reports, 11, Article No. 12670.
https://doi.org/10.1038/s41598-021-90447-5 |
[2] | Park, W., Kim, J., Choi, S., et al. (2021) Human Plasmino-gen-Derived N-acetyl-Arg-Leu-Tyr-Glu Antagonizes VEGFR-2 to Prevent Blood-Retinal Barrier Breakdown in Diabetic Mice. Biomedicine & Pharmacotherapy, 134, Article ID: 111110. https://doi.org/10.1016/j.biopha.2020.111110 |
[3] | Li, X., Ye, Z., Pei, S., et al. (2021) Neuroprotective Effect of Minocycline on Rat Retinal Ischemia-Reperfusion Injury. Molecular Vision, 27, 438-456. |
[4] | Wang, C.-F., Yuan, J.-R., Qin, D., et al. (2016) Protection of Tauroursodeoxycholic Acid on High Glucose-Induced Human Retinal Micro-vascular Endothelial Cells Dysfunction and Streptozotocin-Induced Diabetic Retinopathy Rats. Journal of Ethnophar-macology, 185, 162-170. https://doi.org/10.1016/j.jep.2016.03.026 |
[5] | Abo El Gheit, R.E., Soliman, N.A., Badawi, G.A., et al. (2021) Retinoprotective Effect of Agmatine Instreptozotocin-Induced Diabetic Rat Model: Avenues for Vascular and Neuronal Protection: Agmatine in Diabetic Retinopathy. Journal of Physiology and Biochemistry, 77, 305-320. https://doi.org/10.1007/s13105-021-00799-9 |
[6] | Blum, A., Meerson, A., Rohana, H., et al. (2019) Mi-croRNA-423 May Regulate Diabetic Vasculopathy. Clinical and Experimental Medicine, 19, 469-477. https://doi.org/10.1007/s10238-019-00573-8 |
[7] | Salido, E.M., Bordone, M., De Laurentiis, A., et al. (2013) Therapeutic Efficacy of Melatonin in Reducing Retinal Damage in an Experimental Model of Early Type 2 Diabetes in Rats. Journal of Pineal Research, 54, 179-189.
https://doi.org/10.1111/jpi.12008 |
[8] | Heuser, S.K., LoBue, A., Li, J., et al. (2022) Downregulation of eNOS and Preserved Endothelial Function in Endothelial-Specific Arginase 1-Deficient Mice. Nitric Oxide, 125-126, 69-77. https://doi.org/10.1016/j.niox.2022.06.004 |
[9] | Hein, T.W., Omae, T., Xu, W., et al. (2020) Role of Arginase in Selective Impairment of Endothelium-Dependent Nitric Oxide Synthase-Mediated Dilation of Retinal Arterioles during Early Diabetes. Investigative Ophthalmology & Visual Science, 61, Article No. 36. https://doi.org/10.1167/iovs.61.5.36 |
[10] | Mihoubi, E., Bouldjennet, F., Raache, R., et al. (2019) Polymorphisme T-786C de l’eNOSdans la rétinopathie du diabète de type 1 chez la population algérienne [T-786C Endothelial Nitric Oxide Gene Polymorphism and Type 1 Diabetic Retinopathy in the Algerian Population]. Journal Fran?ais d’Ophtalmologie, 42, 579-585.
https://doi.org/10.1016/j.jfo.2018.11.014 |
[11] | Lin, L.Y., Lin, C.Y., Ho, F.M., et al. (2005) Up-Regulation of the Association between Heat Shock Protein 90 and Endothelial Nitric Oxide Synthase Prevents High Glucose-Induced Apoptosis in Human Endothelial Cells. Journal of Cellular Biochemistry, 94, 194-201. https://doi.org/10.1002/jcb.20195 |
[12] | Xie, W., Zhao, M., Tsai, S.H., et al. (2018) Correlation of Spectral Domain Optical Coherence Tomography with Histology and Electron Microscopy in the Porcine Retina. Experimental Eye Re-search, 177, 181-190.
https://doi.org/10.1016/j.exer.2018.08.003 |
[13] | Sedlak, L., Wojnar, W., Zych, M., et al. (2018) Effect of Resvera-trol, a Dietary-Derived Polyphenol, on the Oxidative Stress and Polyol Pathway in the Lens of Rats with Streptozoto-cin-Induced Diabetes. Nutrients, 10, Article No. 1423.
https://doi.org/10.3390/nu10101423 |
[14] | Van Bergen, T., Hu, T.T., Little, K., et al. (2021) Targeting Plasma Kal-likrein with a Novel Bicyclic Peptide Inhibitor (THR-149) Reduces Retinal Thickening in a Diabetic Rat Model. Investi-gative Ophthalmology & Visual Science, 62, Article No. 18. https://doi.org/10.1167/iovs.62.13.18 |
[15] | Yoshizumi, Y., Ohara, Z., Tabuchi, H., et al. (2019) Effects of Kallidinogenase in Patients Undergoing Vitrectomy for Diabetic Mac-ular Edema. International Ophthalmology, 39, 1307-1313. https://doi.org/10.1007/s10792-018-0945-8 |
[16] | Nishinaka, A., Inoue, Y., Fuma, S., et al. (2018) Pathophysiolog-ical Role of VEGF on Retinal Edema and Nonperfused Areas in Mouse Eyes with Retinal Vein Occlusion. Investigative Ophthalmology & Visual Science, 59, 4701-4713.
https://doi.org/10.1167/iovs.18-23994 |
[17] | Chien, C.T., Jou, M.J., Cheng, T.Y., Yang, C.H., et al. (2015) Exen-din-4-Loaded PLGA Microspheres Relieve Cerebral Ischemia/Reperfusion Injury and Neurologic Deficits through Long-Lasting Bioactivity-Mediated Phosphorylated Akt/eNOS Signaling in Rats. Journal of Cerebral Blood Flow & Metabolism, 35, 1790-1803.
https://doi.org/10.1038/jcbfm.2015.126 |
[18] | Zhai, R., Xu, H., Hu, F., et al. (2020) Exendin-4, a GLP-1 Receptor Agonist Regulates Retinal Capillary Tone and Restores Microvascular Patency after Ischaemia-Reperfusion Injury. Brit-ish Journal of Pharmacology, 177, 3389-3402.
https://doi.org/10.1111/bph.15059 |
[19] | Erdinest, N., London, N., Ovadia, H., et al. (2021) Nitric Oxide Interaction with the Eye. Vision (Basel), 5, Article No. 29. https://doi.org/10.3390/vision5020029 |
[20] | Daruich, A., Matet, A., Moulin, A., et al. (2018) Mechanisms of Macular Edema: Beyond the Surface. Progress in Retinal and Eye Research, 63, 20-68. https://doi.org/10.1016/j.preteyeres.2017.10.006 |
[21] | Jiang, H., Wu, M., Liu, Y., et al. (2017) Serine Race-mase Deficiency Attenuates Choroidal Neovascularization and Reduces Nitric Oxide and VEGF Levels by Retinal Pig-ment Epithelial Cells. Journal of Neurochemistry, 143, 375-388.
https://doi.org/10.1111/jnc.14214 |
[22] | Toma, C., De Cillà, S., Palumbo, A., et al. (2021) Oxidative and Nitrosative Stress in Age-Related Macular Degeneration: A Review of Their Role in Different Stages of Disease. Antioxidants (Ba-sel), 10, Article No. 653.
https://doi.org/10.3390/antiox10050653 |
[23] | Ninchoji, T., Love, D.T., Smith, R.O., et al. (2021) eNOS-Induced Vascular Barrier Disruption in Retinopathy by c-Src Activation and Tyrosine Phosphorylation of VE-Cadherin. Elife, 10, e64944. https://doi.org/10.7554/eLife.64944 |
[24] | Tanaka, M., Nakamura, S., Maekawa, M., Higashiyama, S., et al. (2020) ANKFY1 Is Essential for Retinal Endothelial Cell Proliferation and Migration via VEGFR2/Akt/eNOS Pathway. Biochemical and Biophysical Research Communications, 533, 1406-1412. https://doi.org/10.1016/j.bbrc.2020.10.032 |
[25] | Nakamura-Utsunomiya, A., Tsumura, M., Okada, S., et al. (2020) Downregulation of Endothelial Nitric Oxide Synthase (eNOS) and Endothelin-1 (ET-1) in a Co-Culture System with Human Stimulated X-Linked CGD Neutrophils. PLOS ONE, 15, e0230665. https://doi.org/10.1371/journal.pone.0230665 |
[26] | Chen, S.F., Pan, M.X., Tang, J.C., Cheng, J., Zhao, D., et al. (2020) Arginine Is Neuroprotective through Suppressing HIF-1α/LDHA-Mediated Inflammatory Response after Cere-bral Ischemia/Reperfusion Injury. Molecular Brain, 13, Article No. 63. https://doi.org/10.1186/s13041-020-00601-9 |
[27] | Lv, J., Chen, M.M., Mu, Z.H., et al. (2018) Intravitreal Bevaci-zumab Injection Attenuates Diabetic Retinopathy in Adult Rats with Experimentally Induced Diabetes in the Early Stage. Journal of Diabetes Research, 2018, Article ID: 9216791. https://doi.org/10.1155/2018/9216791 |
[28] | Qadri, A., Cai, C.L., Deslouches, K., et al. (2021) Ocular versus Oral Propranolol for Prevention and/or Treatment of Oxy-gen-Induced Retinopathy in a Rat Model. Journal of Ocular Pharmacology and Therapeutics, 37, 112-130.
https://doi.org/10.1089/jop.2020.0092 |
[29] | McGown, C.C., Brown, N.J., Hellewell, P.G., et al. (2011) ROCK In-duced Inflammation of the Microcirculation during Endotoxemia Mediated by Nitric Oxide Synthase. Microvascular Re-search, 81, 281-288.
https://doi.org/10.1016/j.mvr.2011.02.003 |
[30] | Vrankova, S., Zemancikova, A., Torok, J. and Pechanova, O. (2019) Effect of Low Dose L-NAME Pretreatment on Nitric Oxide/Reactive Oxygen Species Balance and Vasoactivity in L-NAME/Salt-Induced Hypertensive Rats. Journal of Physiology and Pharmacology, 70, No. 4. |
[31] | Smith, T.L., Ou-baha, M., Cagnone, G., et al. (2021) eNOS Controls Angiogenic Sprouting and Retinal Neovascularization through the Regulation of Endothelial Cell Polarity. Cellular and Molecular Life Sciences, 79, Article No. 37.
https://doi.org/10.1007/s00018-021-04042-y |
[32] | Cao, Y., Wang, J., Wei, F., Gu, Q., et al. (2022) Tert-Butylhydroquinone Protects the Retina from Oxidative Stress in STZ-Induced Diabetic Rats via the PI3K/Akt/eNOS Pathway. European Journal of Pharmacology, 935, Article ID: 175297. https://doi.org/10.1016/j.ejphar.2022.175297 |
[33] | Zhou, Q., Tu, T., Tai, S., et al. (2021) Endothelial Specific Dele-tion of HMGB1 Increases Blood Pressure and Retards Ischemia Recovery through eNOS and ROS Pathway in Mice. Redox Biology, 41, Article ID: 101890.
https://doi.org/10.1016/j.redox.2021.101890 |
[34] | Yetkin-Arik, B., Vogels, I.M.C., Nowak-Sliwinska, P., et al. (2019) The Role of Glycolysis and Mitochondrial Respiration in the Formation and Functioning of Endothelial Tip Cells during Angiogenesis. Scientific Reports, 9, Article No. 12608. https://doi.org/10.1038/s41598-019-48676-2 |