|
Finance 2022
基于多元Logit模型的小微企业信用评级分类研究
|
Abstract:
首先用Python语言对123家小微企业共约三十七万条交易信息进行分类整理;然后用主成分分析将多种信息归为四类主要因子,并引入定性变量;最后建立多元Logit模型对企业进行由好至差的A、B、C、D四类评级。结果显示:整体评级准确率达到72%;交易信息离评级时点越近,评级的准确率越高;该模型对D级的评级准确率达到100%,说明该方法能有效甄别最差级别企业,为商业银行规避不良贷款发生提供了一种可行性方法。
First, use Python to classify and sort a total of about 370,000 transaction information from 123 small and micro enterprises; then use principal component analysis to classify a variety of infor-mation into four main factors, and introduce qualitative variables; finally, establish Multinomial Logit model to rank companies from good to bad in four categories: A, B, C and D. The result shows: the overall rating accuracy rate reaches 72%; the closer the transaction information is to the rating time point, the higher the accuracy of the rating; the accuracy rate of the D-level rating of this model reaches 100%, it shows that this method can effectively identify the worst-level enterprises, which provides a feasible method for commercial banks to avoid the occurrence of non-performing loans.
[1] | Roggi, O. and Altman, E. (2012) Managing and Measuring Risk: Emerging Global Standards and Regulations after the Financial Crisis. World Scientific, Singapore, 343-455. |
[2] | 孙雨忱. 信息不对称下银行对中小微企业的最优信贷策略研究——基于Logistic回归的违约率测算模型[J]. 金融发展研究, 2021, 4(6): 78-84. |
[3] | 高璐冰, 赵国庆, 侯家璇. 基于商业银行视角下中小微企业信贷决策研究[J]. 中国商论, 2021(9): 55-57. |
[4] | 乔薇. 中小企业信用评级指标体系与模型的构建[J]. 开封大学学报, 2011, 25(4): 89-93. |
[5] | 徐晓萍, 马文杰. 非上市中小企业贷款违约率的定量分析——基于判别分析法和决策树模型的分析[J]. 金融研究, 2011(3): 111-120. |
[6] | 郭妍, 张立光, 刘佳. 中小企业信贷风险度量模型研究——基于山东省的实证分析[J]. 东岳论丛, 2013, 34(7): 58-61. |
[7] | 夏利宇, 张勇, 鲁强, 汤广瑞. 结合XGBoost算法和Logistic回归的信用评级方法[J]. 征信, 2019, 37(11): 56-59. |
[8] | 白羽, 三郎斯基, 王晓妍, 孙少飞, 王恒友. 基于层次分析法量化中小微企业信贷风险[J]. 北京建筑大学学报, 2021, 37(2): 93-97. |