%0 Journal Article %T 基于多元Logit模型的小微企业信用评级分类研究
Research on Credit Rating Classification of Small and Micro Enterprises Based on Multinomial Logit Model %A 赵星然 %A 邓晓卫 %A 吕学斌 %J Finance %P 582-589 %@ 2161-0975 %D 2022 %I Hans Publishing %R 10.12677/FIN.2022.126063 %X 首先用Python语言对123家小微企业共约三十七万条交易信息进行分类整理;然后用主成分分析将多种信息归为四类主要因子,并引入定性变量;最后建立多元Logit模型对企业进行由好至差的A、B、C、D四类评级。结果显示:整体评级准确率达到72%;交易信息离评级时点越近,评级的准确率越高;该模型对D级的评级准确率达到100%,说明该方法能有效甄别最差级别企业,为商业银行规避不良贷款发生提供了一种可行性方法。
First, use Python to classify and sort a total of about 370,000 transaction information from 123 small and micro enterprises; then use principal component analysis to classify a variety of infor-mation into four main factors, and introduce qualitative variables; finally, establish Multinomial Logit model to rank companies from good to bad in four categories: A, B, C and D. The result shows: the overall rating accuracy rate reaches 72%; the closer the transaction information is to the rating time point, the higher the accuracy of the rating; the accuracy rate of the D-level rating of this model reaches 100%, it shows that this method can effectively identify the worst-level enterprises, which provides a feasible method for commercial banks to avoid the occurrence of non-performing loans. %K 信用评级,Python语言,主成分分析,多元Logit模型
Credit Rating %K Python %K Principal Component Analysis %K Multinomial Logit Model %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=57382