|
Material Sciences 2022
晶粒取向Mn2Sb合金的制备与负热膨胀性能研究
|
Abstract:
负热膨胀材料凭借着能够补偿和控制材料热膨胀性能的优点,在高精度仪器和器件的制造中发挥着至关重要的作用。具有一级磁弹性相变的Mn2Sb基合金,在从高温铁磁到低温反铁磁的相变过程,会伴随着晶格参数的突变,表现出大的负热膨胀效应,具有巨大的应用潜力。本研究通过定向凝固技术,在具有四方晶体结构的Mn1.9Cr0.1Sb合金中制备出了{110}取向的样品,借助扫描电子显微镜、X射线衍射仪、综合物性测量系统以及热机械分析仪等系统地表征了其显微结构、磁性能以及负热膨胀等性能。此外,本研究通过定向凝固制备的取向Mn1.9Cr0.1Sb样品不但致密度高,而且还获得了线膨胀系数为α = ?53.8 ppm/K的大的负热膨胀效应。同时,本研究也为其他负热膨胀材料的制备提供了新策略。
With the advantages of compensating and controlling the thermal expansion of materials, negative thermal expansion materials play an important role in the manufacture of high-precision instruments and devices. Mn2Sb-based alloy shows a first-order magnetic transition from high-temperature ferromagnetic state to low-temperature antiferromagnetic state. The magnetic transition is accompanied by a sudden change in the lattice parameters, leading to a large negative thermal expansion effect. In this study, {110}-oriented Mn1.9Cr0.1Sb alloys were prepared by a directional solidification technique. Its microstructure, grain orientation, magnetic properties, negative thermal expansion and other properties were systematically characterized by means of scanning electron microscope, X-ray diffractometer, comprehensive physical property measure-ment system and thermal mechanical analyzer. The textured Mn1.9Cr0.1Sb samples show not only a high density, but also a linear expansion coefficient of α = ?53.8 ppm/K. Additionally, our study also provides a new strategy for the preparation of other negative thermal expansion materials.
[1] | Mohn, P. (1999) A Century of Zero Expansion. Nature, 400, 18-19. https://doi.org/10.1038/21778 |
[2] | Sleight, A. (2003) Zero-Expansion Plan. Nature, 425, 674-676. https://doi.org/10.1038/425674a |
[3] | Li, W., Huang, R., Wang, W., et al. (2014) Enhanced Negative Thermal Expansion in La1?xPrxFe10.7Co0.8Si1.5 Compounds by Doping the Magnetic Rare-Earth Element Praseodymium. Inorganic Chemistry, 53, 5869-5873.
https://doi.org/10.1021/ic500801b |
[4] | Li, S., Huang, R., Zhao, Y., et al. (2015) Cryogenic Abnormal Thermal Expansion Properties of Carbon-Doped La(Fe,Si)13 Compounds. Physical Chemistry Chemical Physics, 17, 30999-31003. https://doi.org/10.1039/C5CP03948G |
[5] | Zhu, F., Lin, J.T., Zhang, X.K., et al. (2019) Giant Anti-ferromagnetic Negative Thermal Expansion in
(MnNiGe)1?x(MnCoSn)x Compounds. Journal of Alloys and Compounds, 782, 881-886.
https://doi.org/10.1016/j.jallcom.2018.12.127 |
[6] | Lin, J.T., Tong, P., Zhang, K., et al. (2016) Colossal Negative Thermal Expansion with an Extended Temperature Interval Covering Room Temperature in Fine-Powdered Mn0.98CoGe. Applied Physical Letters, 109, Article ID: 2411903.
https://doi.org/10.1063/1.4972234 |
[7] | Omori, T., Watanabe, K., Umetsu, R.Y., et al. (2009) Martensitic Trans-formation and Magnetic Field-Induced Strain in Fe-Mn-Ga Shape Memory Alloy. Applied Physical Letters, 95, Article ID: 082508. https://doi.org/10.1063/1.3213353 |
[8] | Sun, X.M., Cong, D.Y., Ren, Y., et al. (2021) Enhanced Neg-ative Thermal Expansion of Boron-Doped Fe43Mn28Ga28.97B0.03 Alloy. Journal of Alloys and Compounds, 857, Article ID: 157572. https://doi.org/10.1016/j.jallcom.2020.157572 |
[9] | Wilkinson, M.K., Gingrich, N.S. and Shull, C.G. (1957) The Magnetic Structure of Mn2Sb. Journal of Physics and Chemistry of Solids, 2, 289-300. https://doi.org/10.1016/0022-3697(57)90074-4 |
[10] | Bither, T.A., Walter, P.H.L. and Cloud, W.H. (1962) New Modified Mn2Sb Compositions Showing Exchange Inversion. Journal of Applied Physics, 33, Article No. 1346. https://doi.org/10.1063/1.1728723 |
[11] | Kanomata, T. and Ido, H. (1984) Magnetic Transitions in Mn2?xMxSb (M = 3d Metals). Journal of Applied Physics, 55, Article No. 2039. https://doi.org/10.1063/1.333558 |
[12] | Mitsiuk, V.I., Ryzhkovskii, V.M. and Tkachenka, T.M. (2009) Structure and Magnetic Properties of MnSb(Zn) and MnSb(Cu) Solid Solutions. Journal of Alloys and Compounds, 467, 268-270.
https://doi.org/10.1016/j.jallcom.2007.12.047 |
[13] | Zhang, Z.Z., Zhang, Y.X., Luo, X.H., et al. (2020) Self-Organized Bi-Rich Grain Boundary Precipitates for Realizing Steep Magnetic-Field-Driven Metamagnetic Transition in Bi-Doped Mn2Sb. Acta Materialia, 200, 835-847.
https://doi.org/10.1016/j.actamat.2020.09.050 |
[14] | Zhang, Y.Q. and Zhang, Z.D. (2003) Metamagnet-ic-Transition-Induced Giant Magnetoresistance in Mn2Sb1?xSnx (0 < x < 0.4) Compounds. Physical Review B, 67, Article ID: 132405. https://doi.org/10.1103/PhysRevB.67.132405 |
[15] | Ma, S.C., Hou, D., Gong, Y.Y., et al. (2013) Giant Magnetocaloric and Magnetoresistance Effects in Ferrimagnetic Mn1.9Co0.1Sb Alloy. Applied Physical Letters, 104, Arti-cle ID: 022410. https://doi.org/10.1063/1.4862332 |
[16] | Tekgul, A., Caklr, O., Acet, M., et al. (2015) The Structur-al, Magnetic, and Magnetocaloric Properties of In-Doped Mn2?xCrxSb. Journal of Applied Physics, 118, Article ID: 153903. https://doi.org/10.1063/1.4934253 |