全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

耐碳青霉烯类肺炎克雷伯菌的耐药现状及耐药机制研究
Drug Resistance Status and Mechanism of Carbapenem-Resistant Klebsiella pneumoniae

DOI: 10.12677/ACM.2022.12101375, PP. 9507-9513

Keywords: 碳青霉烯类,肺炎克雷伯菌,耐药机制
Carbapenems
, Klebsiella pneumoniae, Resistance Mechanisms

Full-Text   Cite this paper   Add to My Lib

Abstract:

肺炎克雷伯菌作为革兰氏阴性机会致病菌,常定植于人体口腔、呼吸道、胃肠道、泌尿道,是引起院内和社区获得性感染中重要的肠杆菌科。碳青霉烯类抗生素是治疗肺炎克雷伯菌感染的常用药物,然而,随着近年来临床上碳青霉烯类抗菌药物的广泛使用,耐碳青霉烯类肺炎克雷伯菌的患病率以惊人的速度上升,其多重耐药性正在成为一个日益严重的全球性问题,为临床治疗带来了巨大挑战。本文就近年来耐碳青霉烯类肺炎克雷伯菌的耐药现状及分子耐药机制进行综述,为预防及有效遏制该菌的传播提供依据。
Klebsiella pneumoniae, as a gram-negative opportunistic pathogen, is often colonized in human oral cavity, respiratory tract, gastrointestinal tract and urinary tract. It is an important enterobacteri-aceae that causes nosocomial and community-acquired infections. Penicillium carbon alkene is an-tibiotic treatment of Klebsiella pneumoniae infection commonly used drugs, however, as in recent years, the clinical Penicillium carbon alkene the wide use of antimicrobial agents, resistance to car-bon Penicillium the prevalence of alkene pneumonia klebsiella bacteria rising at an alarming rate, its multiple drug resistance is becoming an increasingly serious global problem, has brought the huge challenge for clinical treatment. This article reviews the drug resistance status and molecular resistance mechanisms of carbapenem-resistant Klebsiella pneumoniae in recent years, so as to provide a basis for preventing and effectively curbing the spread of the bacteria.

References

[1]  Wang, G., Zhao, G., Chao, X., et al. (2020) The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiella pneumoniae. International Journal of Environmental Research and Public Health, 17, 6278-6295.
https://doi.org/10.3390/ijerph17176278
[2]  Fu, B., Yin, D., Sun, C., et al. (2022) Clonal and Horizontal Trans-mission of blaNDM among Klebsiella pneumoniae in Children’s Intensive Care Units. Microbiology Spectrum, 10, e0157421.
[3]  Vergadi, E., Bitsori, M., Maraki, S., et al. (2017) Community-Onset Carbapenem-Resistant Klebsiella pneumoniae Urinary Tract Infections in Infancy Following NICU Hospitalisation. Journal of Pediatric Urology, 13, 495e491- 495e496.
https://doi.org/10.1016/j.jpurol.2017.02.008
[4]  Shao, C., Wang, W., Liu, S., et al. (2021) Molecular Epidemiology and Drug Resistant Mechanism of Carbapenem- Resistant Klebsiella pneumoniae in Elderly Pa-tients with Lower Respiratory Tract Infection. Frontiers in Public Health, 9, 669173-669183.
https://doi.org/10.3389/fpubh.2021.669173
[5]  Fritzenwanker, M., Imirzalioglu, C., Herold, S., et al. (2018) Treatment Options for Carbapenem-Resistant Gram- Negative Infections. Deutsches ?rzteblatt International, 115, 345-352.
https://doi.org/10.3238/arztebl.2018.0345
[6]  Zhen, X., Stalsby Lundborg, C., Sun, X., et al. (2020) Clinical and Economic Burden of Carbapenem-Resistant Infection or Colonization Caused by Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii: A Multicenter Study in China. Antibiotics (Basel), 9, 514-527.
https://doi.org/10.3390/antibiotics9080514
[7]  Zhu, Y., Xiao, T., Wang, Y., et al. (2021) Socioeconomic Burden of Bloodstream Infections Caused by Carbapenem- Resistant Enterobacteriaceae. Infection and Drug Resistance, 14, 5385-5393.
https://doi.org/10.2147/IDR.S341664
[8]  MacKenzie, F.M., Forbes, K.J., Dorai-John, T., et al. (1997) Emergence of a Carbapenem-Resistant Klebsiella pneumoniae. The Lancet, 350, 783.
https://doi.org/10.1016/S0140-6736(05)62567-6
[9]  Yigit, H., Queenan, A.M., Anderson, G.J., et al. (2001) Novel Carbapenem-Hydrolyzing Beta-Lactamase, KPC-1, from a Carbapenem-Resistant Strain of Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 45, 1151- 1161.
https://doi.org/10.1128/AAC.45.4.1151-1161.2001
[10]  Yong, D., Toleman, M.A., Giske, C.G., et al. (2009) Characterization of a New Metallo-Beta-Lactamase Gene, bla(NDM-1), and a Novel Erythromycin Esterase Gene Carried on a Unique Genetic Structure in Klebsiella pneumoniae Sequence Type 14 from India. Antimicrobial Agents and Chem-otherapy, 53, 5046-5054.
https://doi.org/10.1128/AAC.00774-09
[11]  王珊珊, 赵建平. 2014-2018年耐碳青霉烯类肺炎克雷伯菌分离及耐药率分析[J]. 中国抗生素杂志, 2020, 45(10): 1058-1062.
[12]  周馨, 马筱玲, 戴媛媛, 等. 2014-2017年某院肺炎克雷伯菌分布及耐药性分析[J]. 中华医院感染学杂志, 2019, 29(21): 3210-3215.
[13]  杨程茹, 王英, 李莹, 等. 重症监护病房耐碳青霉烯类肺炎克雷伯菌分子流行病学研究[J]. 中国感染控制杂志, 2022, 21(3): 209-216.
[14]  南超, 黄一凤, 马娜, 等. ICU患者耐碳青霉烯类肺炎克雷伯菌的耐药及传播机制的分析[J]. 中国病原生物学杂志, 2022, 17(5): 578-581.
[15]  郑军涛, 胡会. 耐碳青霉烯类肺炎克雷伯菌的基因组分型及耐药性评估[J]. 中国药物滥用防治杂志, 2022, 28(4): 528-531.
[16]  王群, 王亦晨, 张祎博, 等. 2016-2020年某三级综合医院耐碳青霉烯类肺炎克雷伯菌检出趋势[J]. 中华医院感染学杂志, 2022, 32(6): 835-839.
[17]  Zhang, H., Wang, J., Zhou, W., et al. (2021) Risk Factors and Prognosis of Carbapenem-Resistant Klebsiella pneumoniae Infections in Respiratory In-tensive Care Unit: A Retrospective Study. Infection and Drug Resistance, 14, 3297- 3305.
https://doi.org/10.2147/IDR.S317233
[18]  Liu, L., Feng, Y., Wei, L., et al. (2021) KPC-2-Producing Car-bapenem-Resistant Klebsiella pneumoniae of the Uncommon ST29 Type Carrying OXA-926, a Novel Narrow-Spectrum OXA beta-Lactamase. Frontiers in Microbiology, 12, Article ID: 701513.
https://doi.org/10.3389/fmicb.2021.701513
[19]  Chang, A.H., Sharma, L., Dela Cruz, C.S., et al. (2021) Clinical Epidemiology, Risk Factors, and Control Strategies of Klebsiella pneumoniae Infection. Frontiers in Microbiology, 12, Article ID: 750662.
https://doi.org/10.3389/fmicb.2021.750662
[20]  贺宇, 姚卫, 卿克勤, 等. 耐碳青霉烯类肺炎克雷伯菌的分布特征及耐药性分析[J]. 基因组学与应用生物学, 2021, 40(Z3): 3296-3301.
[21]  胡小品, 袁国航, 吴瑶瑶, 等. 中国西南地区3所综合性医院耐碳青霉烯类肺炎克雷伯菌流行病学特征及耐药性[J]. 中国感染控制杂志, 2022, 21(2): 121-127.
[22]  黄静敏, 柯碧霞, 何冬梅, 等. 广东地区耐碳青霉烯类肺炎克雷伯菌耐药性及分子流行病学特征[J]. 中华医院感染学杂志, 2022, 32(6): 813-818.
[23]  Toledano-Tableros, J.E., Gayosso-Vazquez, C., Jaril-lo-Quijada, M.D., et al. (2021) Dissemination of bla NDM-1 Gene among Several Klebsiella pneumoniae Sequence Types in Mexico Associated with Horizontal Transfer Mediated by IncF-Like Plasmids. Frontiers in Microbiology, 12, 611274-611283.
https://doi.org/10.3389/fmicb.2021.611274
[24]  Li, T., Wang, Q., Chen, F., et al. (2013) Bio-chemical Characteristics of New Delhi Metallo-Beta-Lactamase-1 Show Unexpected Difference to Other MBLs. PLOS ONE, 8, e61914-61919.
https://doi.org/10.1371/journal.pone.0061914
[25]  Shein, A.M.S., Wannigama, D.L., Hig-gins, P.G., et al. (2021) Novel colistin-EDTA Combination for Successful Eradication of Colistin-Resistant Klebsiella pneumoniae Catheter-Related Biofilm Infections. Scientific Reports, 11, 21676- 21689.
https://doi.org/10.1038/s41598-021-01052-5
[26]  Poirel, L., Heritier, C., Tolun, V., et al. (2004) Emergence of Oxacillinase-Mediated Resistance to Imipenem in Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 48, 15-22.
https://doi.org/10.1128/AAC.48.1.15-22.2004
[27]  Lee, C.R., Lee, J.H., Park, K.S., et al. (2016) Global Dissemi-nation of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Frontiers in Microbiology, 7, 895-925.
https://doi.org/10.3389/fmicb.2016.00895
[28]  Duman, Y., Ersoy, Y., Gursoy, N.C., et al. (2020) A Silent Out-break Due to Klebsiella pneumoniae That Co-Produced NDM-1 and OXA-48 Carbapenemases, and Infection Control Measures. Iranian Journal of Basic Medical Sciences, 23, 46-50.
[29]  Del Rio, A., Muresu, N., Sotgiu, G., et al. (2022) High-Risk Clone of Klebsiella pneumoniae Co-Harbouring Class A and D Carbapenemases in Italy. International Jour-nal of Environmental Research and Public Health, 19, 2623-2634.
https://doi.org/10.3390/ijerph19052623
[30]  Han, X., Chen, Y., Zhou, J., et al. (2022) Epidemiological Character-istics of OXA-232-Producing Carbapenem-Resistant Klebsiella pneumoniae Strains Isolated during Nosocomial Clonal Spread Associated with Environmental Colonization. Microbiology Spectrum, 2022, e0257221.
https://doi.org/10.1128/spectrum.02572-21
[31]  Nishimura, F., Morinaga, Y., Akamatsu, N., et al. (2018) Plas-mid-Mediated AmpC beta-Lactamase and Underestimation of Extended-Spectrum beta-Lactamase in Cefepime-Susceptible Elevated-Ceftazidime-MIC Enterobacteriaceae Isolates. Japanese Journal of Infectious Diseases, 71, 281-285.
https://doi.org/10.7883/yoken.JJID.2017.469
[32]  Cruz-Lopez, F., Martinez-Melendez, A., Morfin-Otero, R., et al. (2022) Efficacy and in Vitro Activity of Novel Antibiotics for Infections with Car-bapenem-Resistant Gram-Negative Pathogens. Frontiers in Cellular and Infection Microbiology, 12, Article ID: 884365.
https://doi.org/10.3389/fcimb.2022.884365
[33]  Bassetti, M., Giacobbe, D.R., Castaldo, N., et al. (2021) Role of New Antibiotics in Extended-Spectrum Beta-Lactamase-, AmpC-Infections. Current Opinion in Infectious Diseases, 34, 748-755.
https://doi.org/10.1097/QCO.0000000000000789
[34]  Shi, W., Li, K., Ji, Y., et al. (2013) Carbapenem and Cefox-itin Resistance of Klebsiella pneumoniae Strains Associated with Porin OmpK36 Loss and DHA-1 Beta-Lactamase Pro-duction. Brazilian Journal of Microbiology, 44, 435-442.
https://doi.org/10.1590/S1517-83822013000200015
[35]  Le, T., Wang, L., Zeng, C., et al. (2021) Clinical and Mi-crobiological Characteristics of Nosocomial, Healthcare-Asso- ciated, and Community-Acquired Klebsiella pneumoniae Infections in Guangzhou, China. Antimicrobial Resistance & Infection Control, 10, 41-52.
https://doi.org/10.1186/s13756-021-00910-1
[36]  Cao, X., Zhong, Q., Guo, Y., et al. (2021) Emergence of the Coexistence of mcr-1, bla NDM-5, and bla CTX-M-55 in Klebsiella pneumoniae ST485 Clinical Isolates in China. Infec-tion and Drug Resistance, 14, 3449-3458.
https://doi.org/10.2147/IDR.S311808
[37]  Ejaz, H. (2022) Analysis of Diverse beta-lactamases Presenting High-Level Resistance in Association with OmpK35 and OmpK36 Porins in ESBL-Producing Klebsiella pneumoniae. Saudi Journal of Biological Sciences, 29, 3440-3447.
https://doi.org/10.1016/j.sjbs.2022.02.036
[38]  Sharma, A., Gupta, V.K., and Pathania, R. (2019) Efflux Pump In-hibitors for Bacterial Pathogens: From Bench to Bedside. Indian Journal of Medical Research, 149, 129-145.
https://doi.org/10.4103/ijmr.IJMR_2079_17
[39]  Zhang, Q., Lin, L., Pan, Y., et al. (2021) Characterization of Tigecycline-Heteroresistant Klebsiella pneumoniae Clinical Isolates from a Chinese Tertiary Care Teaching Hospital. Frontiers in Microbiology, 12, 671153-671165.
https://doi.org/10.3389/fmicb.2021.671153
[40]  Sutaria, D.S., Moya, B., Green, K.B., et al. (2018) First Penicil-lin-Binding Protein Occupancy Patterns of Beta-Lactams and beta-Lactamase Inhibitors in Klebsiella pneumoniae. Anti-microbial Agents and Chemotherapy, 62, e00282-18.
https://doi.org/10.1128/AAC.00282-18

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133