全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

How Initial Degrees of Freedom May Contribute to Initial Effective Mass, i.e. Effective Mass of the Universe Proportional to (D.O.F.) to the 1/4th Power by an Enormous Initial Degree of Freedom Value

DOI: 10.4236/jhepgc.2022.84079, PP. 1127-1133

Keywords: Degrees of Freedom, Effective Mass, Hubbles Parameter

Full-Text   Cite this paper   Add to My Lib

Abstract:

Using a relationship between Hubble’s “parameter”, Temperature, Energy and effective mass, from there obtain in 3 + 1 dimensions a relationship between effective mass, and the initial degrees of freedom, to the 1/4th power, we will discuss candidates for entry into this, assuming for a start that initial universe conditions are similar to a black hole, i.e. a nearly singular start to inflationary expansion; this would necessitate a HUGE initial degree of freedom value as outlined in our argument.

References

[1]  Padmanabhan, T. (2005) Understanding Our Universe: Current Status and Open Issues. In: Ashtekar, A., Ed., 100 Years of Relativity: Space-Time Structure: Einstein and Beyond, World Scientific Publishing Company, Singapore, 175-204.
https://doi.org/10.1142/9789812700988_0007
[2]  Padmanabhan, T. (2000) Theoretical Astrophysics: Volume 3, Galaxies and Cosmology (Theoretical Astrophysics). Cambridge University Press, Cambridge.
[3]  Chavanis, P.H. (2015) Self-Gravitating Bose-Einstein Condensates. In: Calmet, X., Ed., Quantum Aspects of Black Holes, Springer, New York, 151-194.
https://doi.org/10.1007/978-3-319-10852-0_6
[4]  Beckwith, A.W. (2005) Using “Enhanced Quantization” to Bound the Cosmological Constant, (for a Bound-On Graviton Mass), by Comparing Two Action Integrals (One Being from General Relativity) at the Start of Inflation. Chongqing University, Chongqing.
http://vixra.org/pdf/1802.0305v1.pdf
[5]  Beckwith, A. (2016) Gedanken Experiment for Refining the Unruh Metric Tensor Uncertainty Principle via Schwarzschild Geometry and Planckian Space-Time with Initial Nonzero Entropy and Applying the Riemannian-Penrose Inequality and Initial Kinetic Energy for a Lower Bound to Graviton Mass (Massive Gravity). Journal of High Energy Physics, Gravitation and Cosmology, 2, 106-124.
https://doi.org/10.4236/jhepgc.2016.21012
[6]  Giovannini, M. (2008) A Primer on the Physics of the Cosmic Microwave Background. World Scientific Publishing Company, Singapore.
https://doi.org/10.1142/6730
[7]  Padmanabhan, T. (2005) An Invitation to Astrophysics. In: World Scientific Series in Astronomy and Astrophysics, Vol. 8, World Scientific Publishing Company, Singapore.
https://doi.org/10.1142/6010
[8]  Beckwith, A.W. (2017) Creating a (Quantum?) Constraint, in Pre Planckian Space-Time Early Universe via the Einstein Cosmological Constant in a One to One and onto Comparison between Two Action Integrals. (Text of Talk for FFP 15, Spain November 30, 11 AM-11:30 AM, Conference). Chongqing University, Chongqing.
http://vixra.org/abs/1711.0355
[9]  Camara, C.S., de Garcia Maia, M.R., Carvalho, J.C. and Lima, J.A.S. (2004) Nonsingular FRW Cosmology and Nonlinear Electrodynamics. Physical Review D, 69, Article ID: 123504.
https://doi.org/10.1103/PhysRevD.69.123504
[10]  Dimopoulos, K. (2021) Introduction to Cosmic Inflation and Dark Energy. CRC Press, Boca Raton.
https://doi.org/10.1201/9781351174862
[11]  Alder, R., Bazin, M. and Schiffer, M. (1965) Introduction to General Relativity. McGraw-Hill Book Company, New York.
[12]  Novello, M. (2005) The Mass of the Graviton and the Cosmological Constant Puzzle. ArXiv:astro-ph/0504505.
https://arxiv.org/abs/astro-ph/0504505
[13]  Haranas, I. and Gkigkitzis, I. (2014) The Mass of Graviton and Its Relation to the Number of Information According to the Holographic Principle. International Scholarly Research Notices, 2014, Article ID: 718251.
https://doi.org/10.1155/2014/718251
http://www.hindawi.com/journals/isrn/2014/718251/
[14]  Shalyt-Margolin, A.E. (2006) Deformed Density Matrix and Quantum Entropy of the Black Hole. Entropy, 8, 31-43.
https://doi.org/10.3390/e8010031
[15]  Kieffer, C. (2000) Conceptual Issues in Quantum Cosmology. In: Kowalski-Glikman, J., Ed., Toward Quantum Cosmology, Springer, New York, 158-187.
[16]  Shalyt-Margolin, A.E. (2005) The Density Matrix Deformation in Physics of the Early Universe and Some of Its Implications. In: Quantum Cosmology Research Trends. Horizons in World Physics, Vol. 246, Nova Science Publishers, Hauppauge, NY, 49-91.
[17]  Hajdukovic, D. (2007) Concerning Production and Decay of Mini Black Holes.
http://cds.cern.ch/record/1020935/files/0702142.pdf
[18]  Hawking, S.W. (1974) Black Hole explosions? Nature, 248, 30-31.
https://doi.org/10.1038/248030a0
[19]  Beckwith, A.W. (2018) Using “Enhanced Quantization” to Bound the Cosmological Constant, and Computing Quantum Number N for Production of 100 Relic Mini Black Holes in a Spherical Region of Emergent Space-Time. Chongqing University, Chongqing.
http://vixra.org/abs/1805.0378
[20]  Corda, C. (2018) Space-Time Can Be neither Discrete nor Continuous. Modern Physics Letters A, 33, Article No.1850069.
[21]  Calmet, X. (2022) Quantum Black Holes. University of Sussex, Brighton.
https://www.mpifr-bonn.mpg.de/1311186/Calmet.pdf
[22]  Kirshner, R.P. (1999) Supernovae, an Accelerating Universe and the Cosmological Constant. Proceedings of the National Academy of Sciences of the United States of America, 96, 4224-4227.
http://www.pnas.org/content/96/8/4224
https://doi.org/10.1142/S0217732318500694

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133