|
多酚微胶囊化技术及其体外释放研究进展
|
Abstract:
近年来,糖尿病、心血管疾病、癌症等慢性病的发病率逐年攀升,此类疾病均可由氧化应激损伤导致,氧化损伤的成因可能是自由基不受控的合成或抗氧化能力的失衡,抗氧化剂则可有效预防上述疾病的发生。多酚类物质是天然资源中常见的抗氧化活性成分,富含于日常的蔬果中,可作为最温和且有效的抗氧化剂。然而,天然多酚的生物利用率低,在不适的环境中的极不稳定易变性,大大限制了其开发利用的可能性。微胶囊技术作为食品研发领域的热点高新技术,它可通过将多酚包埋于壁材中,保护其免于环境的影响,并在合适的时间或部位进行释放,较好地解决了多酚开发利用过程中的问题。本文综述了多酚微胶囊化的技术和原理、壁材和制备方法,以及其体外释放模型和常见的释放动力学机理模型。
The incidence rate of diabetes mellitus (DM), cardiovascular diseases, cancer and other chronic diseases has been rising over the recent years. Such diseases can be caused by oxidative stress damage. Uncontrolled synthesis of free radicals or imbalance of antioxidant capacity can lead to oxidative damage. Oral antioxidants can effectively prevent these diseases. The mildest and most effective sources of antioxidants are the active ingredients of natural resources, such as polyphenols, which are rich in daily fruits and vegetables. However, the low bioavailability of natural polyphenols and their instability and variability in an uncomfortable environment greatly limit the possibility of their development. As a hot high technology in the field of food research and development, microencapsulation technology can protect polyphenols from environmental impact by embedding them in the wall materials, and release them at the appropriate time or location, which can better solve the problems in the development and utilization of polyphenols. This paper discusses the technical principle and process of microencapsulation of polyphenols, the selection of wall materials and preparation methods, the selection of release models in vitro and common release kinetic mechanism models.
[1] | Casanova, F., Estevinho, B.N. and Santos, L. (2016) Preliminary Studies of Rosmarinic Acid Microencapsulation with Chitosan and Modified Chitosan for Topical Delivery. Powder Technology, 297, 44-49.
https://doi.org/10.1016/j.powtec.2016.04.014 |
[2] | Dawidowicz, A.L., Wianowska, D. and Baraniak, B. (2006b) The Antioxidant Properties of Alcoholic Extracts from Sambucus nigra L. (Antioxidant Properties of Extracts). Lebens-mittel-Wissenschaft und-Technologie-Food Science and Technology, 39, 308-315. https://doi.org/10.1016/j.lwt.2005.01.005 |
[3] | Aliakbarian, B., Paini, M., Casazza, A.A. and Perego, P. (2015) Ef-fect of Encapsulating Agent on Physical-Chemical Characteristics of Olive Pomace Polyphenols-Rich Extracts. Chemical Engineering Transactions, 43, 97-102. |
[4] | Balanc, B. and Trifkovic, K. (2015) Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds. Food Engineering Reviews, 7, 452-490. https://doi.org/10.1007/s12393-014-9106-7 |
[5] | St?nciuc, N., Oancea, A.M., Aprodu, I., Turturic?, M., Barbu, V., Ionita, E. and Bahrim, G. (2018) Investigations on Binding Mechanism of Bioactives from Elderberry (Sambucus nigra L.) by Whey Proteins for Efficient Microencapsulation. Journal of Food Engineering, 223, 197-207. https://doi.org/10.1016/j.jfoodeng.2017.10.019 |
[6] | Opris, R., Tatomir, C., Olteanu, D., Moldovan, R., Moldovan, B., David, L. and Adriana, G. (2017) Colloids and Surfaces B: Biointerfaces the Effect of Sambucus nigra L. Extract and Phytosinthesized Gold Nanoparticles on Diabetic Rats. Colloids and Surfaces B: Biointerfaces, 150, 192-200. https://doi.org/10.1016/j.colsurfb.2016.11.033 |
[7] | Ydjedd, S., Bouriche, S., López-Nicolás, R., Sánchez-Moya, T., Frontela-Saseta, C., Ros-Berruezo, G., and Kati, D.-E. (2017) Effect of in Vitro Gastrointestinal Digestion on Encapsu-lated and Nonencapsulated Phenolic Compounds of Carob (Ceratonia siliqua L.) Pulp Extracts and their Antioxidant Capacity. Journal of Agricultural and Food Chemistry, 65, 827-835. https://doi.org/10.1021/acs.jafc.6b05103 |
[8] | Ahmadian, Z., Niazmand, R. and Pourfarzad, A. (2019) Microen-capsulation of Saffron Petal Phenolic Extract: Their Characterization, in Vitro Gastrointestinal Digestion, and Storage Sta-bility. Journal of Food Science, 84, 2745-2757.
https://doi.org/10.1111/1750-3841.14807 |
[9] | Consoli, L., Grimaldi, R., Sartori, T. and Menegalli, F.C. (2016) Gallic Acid Microparticles Produced by Spray Chilling Technique: Production and Characterization. Lebensmit-tel-Wissenschaft und-Technologie-Food Science and Technology, 65, 79-87. https://doi.org/10.1016/j.lwt.2015.07.052 |
[10] | Estevinho, B.N. and Rocha, F. (2017) A Key for the Future of the Flavors in Food Industry: Nanoencapsulation and Microencapsulation. In: Grumezescu, A. and Oprea, A., Eds., Nano-technology Applications in Food: Flavor, Stability, Nutrition and Safety, Elsevier, Amsterdam, 1-19. https://doi.org/10.1016/B978-0-12-811942-6.00001-7 |
[11] | Carvalho, I.T., Estevinho, B.N. and Santos, L. (2016) Application of Microencapsulated Essential Oils in Cosmetic and Personal Healthcare Products—A Review. Internation-al Journal of Cosmetic Industry, 38, 109-119.
https://doi.org/10.1111/ics.12232 |
[12] | Maria, B., Nogueiro, A., Alberto, F., Rocha, N., Silveira, D. and Arminda, M. (2013) Using Water-Soluble Chitosan for Flavour Microencapsulation in Food Industry. Journal of Microencapsula-tion, 30, 571-579.
https://doi.org/10.3109/02652048.2013.764939 |
[13] | Estevinho, B.N. and Rocha, F. (2016) Microencapsulation of Vitamin A: A Review. Trends in Food Science & Technology, 51, 76-87. https://doi.org/10.1016/j.tifs.2016.03.001 |
[14] | Estevinho, B.N., Damas, A.M., Martins, P. and Rocha, F. (2012) Study of the Inhibition Effect on the Microencapsulated Enzyme β-Galactosidase. Environmental Engineering and Man-agement Journal, 11, 1923-1930.
https://doi.org/10.30638/eemj.2012.241 |
[15] | Aguiar, J., Estevinho, B.N. and Santos, L. (2016) Microencapsulation of Natural Antioxidants for Food Application—The Specific Case of Coffee Antioxidants—A Review. Trends in Food Science & Technology, 58, 21-39.
https://doi.org/10.1016/j.tifs.2016.10.012 |
[16] | Estevinho, B.N., Rocha, F., Santos, L. and Alves, A. (2013) Mi-croencapsulation with Chitosan by Spray Drying for Industry Applications—A Review. Trends in Food Science & Technology, 31, 138-155.
https://doi.org/10.1016/j.tifs.2013.04.001 |
[17] | Ribeiro, A.M., Estevinho, B.N. and Rocha, F. (2019) Microencap-sulation of Polyphenols—The Specific Case of the Microencapsulation of Sambucus nigra L. Extracts—A Review. Trends in Food Science & Technology, 105, 454-467.
https://doi.org/10.1016/j.tifs.2019.03.011 |
[18] | Davidov-pardo, G. and Arozarena, I. (2013) Optimization of a Wall Material Formulation to Microencapsulate a Grape Seed Extract Using a Mixture Design of Experiments. Food and Bio-process Technology, 6, 941-951.
https://doi.org/10.1007/s11947-012-0848-z |
[19] | Bel, A., Levi, S., Kalu, A. and Igor, ?. (2015) Efficiency Assess-ment of Natural Biopolymers as Encapsulants of Green Tea (Camellia sinensis L.) Bioactive Compounds by Spray Dry-ing. Food and Bioprocess Technology, 8, 2444-2460.
https://doi.org/10.1007/s11947-015-1592-y |
[20] | Augustin, M.A., Sanguansri, L. and Lockett, T. (2013) Nano- and Micro-Encapsulated Systems for Enhancing the Delivery of Resveratrol. Annals of the New York Academy of Sciences, 1290, 107-112. https://doi.org/10.1111/nyas.12130 |
[21] | Alves, D. and Pinho, E. (2021) Encapsulation of Poly-phenols, Plant Bioactive Compounds. In: Ho, T.M., et al., Eds., Functionality of Cyclodextrins in Encapsulation for Food Applications, Springer, Berlin, 99-113.
https://doi.org/10.1007/978-3-030-80056-7_6 |
[22] | Nagula, R.L. and Wairkar, S. (2019) Recent Advances in Topi-cal Delivery of Flavonoids: A Review. Journal of Controlled Release, 296, 190-201. https://doi.org/10.1016/j.jconrel.2019.01.029 |
[23] | 孟锐, 李晓刚, 周小毛. 药物微胶囊壁材研究进展[J]. 广州化工, 2012, 40(13): 28-37. |
[24] | 陈彬, 王宗抗, 张敏, 孟品品, 张志鹏. 微胶囊壁材的研究进展[J]. 磷肥与复肥, 2020, 35(8): 50-52. |
[25] | Baltrusch, K.L., Torres, M.D., Domínguez, H. and Flórez-Fernández, N. (2022) Spray-Drying Microencapsulation of Tea Extracts Using Green Starch, Alginate or Carrageenan as Carrier Materials. International Journal of Biological Macromolecules, 203, 417-429. https://doi.org/10.1016/j.ijbiomac.2022.01.129 |
[26] | Saeki, I., Kondo, K., Furukoshi, Y., Watanabe, Y. and Niwa, T. (2021) Design of Taste-Masked Swellable Drug Particles Using Dry-Coating Technology with Mechanical Curing. European Journal of Pharmaceutics and Biopharmaceutics, 160, 9-22. https://doi.org/10.1016/j.ejpb.2020.12.019 |
[27] | Tian, Q., Zhou, W., Cai, Q., Guanghui, M.A. and Lian, G. (2020) Concepts, Processing, and Recent Developments in Encapsulating Essential Oils. Chinese Journal of Chemical Engineering, 30, 255-271.
https://doi.org/10.1016/j.cjche.2020.12.010 |
[28] | 王嘉炜, 王迎国. 微胶囊的制备方法研究进展[J]. 纳米技术, 2022, 12(2): 19-25. |
[29] | 侯泽淇, 孔欣欣, 张杰. 食品微胶囊技术应用现状及其发展前景[J]. 现代食品, 2022(10): 50-53. |
[30] | Dias, M.L., Agüero, L. and Zaldivar-Silva, D. (2017) Alginate Microparticles as Oral Colon Drug Delivery Device: A Review. Carbohydrate Polymers, 168, 32-43. https://doi.org/10.1016/j.carbpol.2017.03.033 |
[31] | 张冠亚, 黄晓君, 聂少平, 崔武卫. 体外模拟3种消化液对铁皮石斛多糖的消化作用[J]. 食品科学, 2014, 35(23): 279-283. |
[32] | Morsi, N.M., Abdelbary, G.A., Elshafeey, A.H. and Ahmed, M.A. (2017) Engineering of a Novel Opti-mized Platform for Sublingual Delivery with Novel Characterization Tools: In Vitro Evaluation and in Vivo Pharmacoki-netics Study in Human. Drug Delivery, 24, 918. https://doi.org/10.1080/10717544.2017.1334719 |
[33] | 赵悦清, 柳文洁, 程泽能. 口服固体制剂的体外溶出试验及体内外相关性研究进展[J]. 中国药房, 2018, 29(12): 1718-1723. |
[34] | 赵海云, 刘广桢, 王松, 刘文坤, 王昊天, 凌霄, 胡昌勤. 基于来氟米特的溶解度、渗透性分析初步预测制剂的生物等效性[J]. 中国药学杂志, 2018, 53(13): 1117-1122. |
[35] | 黄财顺, 李宝才, 向诚. 人工胃肠液模型在药物稳定性研究中的应用现状[J]. 天然产物研究与开发, 2015, 27(10): 1836-1841. |
[36] | Nitin, B.B., Ad-hikrao, V.Y., Sachin, S.M., Rohan, A.K., Ashok, A.H. and Sachin, S.S. (2014) A Review on Development of Bio-relevant Dissolution Medium. Journal of Drug Delivery and Therapeutics, 4, 140-148.
https://doi.org/10.22270/jddt.v4i2.800 |
[37] | Marques, M.R.C., Loebenberg, R. and Almukainzi, M. (2011) Simu-lated Biological Fluids with Possible Application in Dissolution Testing. Dissolution Technologies, 18, 15-28. https://doi.org/10.14227/DT180311P15 |