全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

国内外农业四轮机器人的发展现状及展望
Development Status and Prospect of Agricultural Four Wheeled Robot at Home and Abroad

DOI: 10.12677/HJAS.2022.129126, PP. 890-897

Keywords: 机器人技术,农业四轮机器人,结构设计与控制策略
Robot Technology
, Agricultural Four-Wheeled Robot, Structural Design and Control Strategy

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来机器人技术发展迅速,逐渐在多领域崭露头角,四轮移动机器人作为机器人领域的一个重要分支,在通信、电子、传感器技术等的推动下,正从传统的工业领域向农业领域快速渗透,为制造更高的经济效益和生态效益提供了可能。本文围绕国内外对农用四轮机器人的研究,就其结构及控制策略的发展现状、研究中存在的不足进行了概述,最后针对农业四轮机器人的可发展空间,在技术和应用层面上提出了展望。
In recent years, robot technology has developed rapidly and gradually emerged in many fields. Four-wheel mobile robots, a significant subfield of the robot industry, are rapidly permeating from the traditional industrial field to the agricultural field under the promotion of communication, electronics, and sensor technology, allowing for the generation of greater economic and ecological benefits. Focusing on the research of agricultural four-wheel robots at home and abroad, this paper summarizes the development status of its structure and control strategy, and the shortcomings in the research. The prospect of the technology and application level is presented, with an eye toward the agricultural four-wheel robots’ potential for development.

References

[1]  黄群慧, 贺俊. 中国制造业的核心能力、功能定位与发展战略——兼评《中国制造2025》[J]. 中国工业经济, 2015(6): 5-17.
[2]  付宜利, 李寒, 徐贺, 马玉林. 轮式全方位移动机器人几种转向方式的研究[J]. 制造业自动化, 2005, 27(10): 36-40.
[3]  Siciliano, B. and Khatib, O. (2008) Springer Handbook of Robotics. Springer-Verlag, Berlin, 1611 p.
https://doi.org/10.1007/978-3-540-30301-5
[4]  李雪原, 张宇, 胡纪滨, 苑士华. 轮式车辆速差转向过程的转向阻力特性[J]. 兵工学报, 2011, 32(12): 1433-1438.
[5]  张豫南, 杨怀彬, 黄涛, 张舒阳, 房远. 向心型履带式全方位移动平台运动分析[J]. 兵工学报, 2017, 38(12): 2309-2320.
[6]  张千伟, 张龙. 仿生四足机器人结构设计与运动学分析[J]. 兵工自动化, 2017, 36(5): 73-76.
[7]  曲梦可, 王洪波, 荣誉. 轮腿混合机器人机械腿动力学建模与驱动预估[J]. 兵工学报, 2017, 38(8): 1619-1629.
[8]  陈威, 郭书普. 中国农业信息化技术发展现状及存在的问题[J]. 农业工程学报, 2013, 29(22): 196-205.
[9]  Mobile Robots Inc. (2007).
[10]  Madsen, T.E. and Jacob-sen, H.L. (2001) Mobile Robot for Weeding. Danish Technical University, Denmark.
[11]  Ruckelshausen, A., Biber, P., Doma, M., et al. (2014) BoniRob: An Autonomous Field Robot Platform for Individual Plant Phenotyping. Precision Agriculture, 9, 841-847.
[12]  Khan, M.A., Aftab, M.F., Ahmed, E., et al. (2019) Robust Differential Steering Control System for an Independent Four-Wheel Drive Electric Vehicle. Automotive Technology, 20, 87-97.
https://doi.org/10.1007/s12239-019-0008-9
[13]  Song, J.B. and Byun, K.S. (2009) Steering Control Algorithm for Efficient Drive of a Mobile Robot with Steerable Omni-Directional Wheels. Journal of Mechanical Science and Tech-nology, 23, 2747-2756.
https://doi.org/10.1007/s12206-009-0810-9
[14]  Aslam, J., Qin, S.Y. and Alvi, M.A. (2014) Fuzzy Sliding Mode Control Algorithm for a Four-Wheel Skid Steer Vehicle. Journal of Mechanical Science and Technology, 28, 3301-3310.
https://doi.org/10.1007/s12206-014-0741-y
[15]  路敌. 温室作业机的柔性底盘及其控制系统的研究与开发[D]: [硕士学位论文]. 杨凌: 西北农林科技大学, 2011.
[16]  王友权, 周俊, 姬长英, 等. 基于自主导航和全方位转向的农用机器人设计[J]. 农业工程学报, 2008, 24(7): 110-13.
[17]  张京, 陈度, 王书茂, 等. 农用轮式机器人四轮独立转向驱动控制系统设计与试验[J]. 农业工程学报, 2015(18): 63-70.
[18]  孙棣华, 李硕, 崔明月, 廖孝勇, 何伟. 轮式移动机器人智能变结构控制算法研究[J]. 控制工程, 2013, 20(3): 553-557+561.
[19]  王龙, 章政. 四轮独立驱动移动机器人的转向控制研究与设计[J]. 控制工程, 2017, 24(11): 2387-2393.
[20]  蔡韶峰. 四轮移动小车设计及研究[D]: [硕士学位论文]. 芜湖: 安徽工程大学, 2018.
[21]  卢山峰, 徐兴, 陈龙, 等. 轮毂电机驱动汽车电子差速与差动助力转向的协调控制[J]. 机械工程学报, 2017, 53(16): 78-85.
[22]  程璐璐. 四轮独立驱动和转向机器人平台控制系统的设计与实现[D]: [硕士学位论文]. 上海: 上海师范大学, 2019.
[23]  Zhai, L., Wang, J. and Feng, H. (2014) Research on Skid Steering Control Strategy for Four-in-Wheel-Motor Drive Electrical Vehicle. 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, 31 August-3 Sep-tember 2014, 1-6.
https://doi.org/10.1109/ITEC-AP.2014.6940896
[24]  Shuai, Z.B., Zhang, H., Wang, J.M., et al. (2014) Lateral Motion Control for Four-Wheel-Independent-Drive Electric Vehicles Using Optimal Torque Allocation and Dynamic Message Priority Scheduling. Control Engineering Practice, 3, 55-66.
https://doi.org/10.1016/j.conengprac.2013.11.012

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133