全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CD4+ T细胞能量代谢在神经系统自身免疫性疾病中的研究进展
Research Progress of CD4+ T Cell Energy Metabolism in Autoimmune Diseases of the Nervous System

DOI: 10.12677/ACM.2022.1291176, PP. 8162-8169

Keywords: CD4+ T细胞,能量代谢,自身免疫性疾病
CD4+ T Cells
, Energy Metabolism, Autoimmune Disease

Full-Text   Cite this paper   Add to My Lib

Abstract:

CD4+ T细胞在机体免疫系统中具有重要作用,根据活化后的功能不同可分为辅助性T细胞(T helper cells, Th)和调节性T细胞(regulatory T cells, Treg),Th包括Th1、Th2、Th9、Th17、Th22等亚群。CD4+ T细胞在发育、激活和介导免疫应答等过程中均会进行代谢重编程,以满足其对应的能量需求,CD4+ T细胞能量代谢异常会导致机体免疫功能紊乱,在自身免疫性疾病中发挥重要作用。本文主要对CD4+ T细胞亚群能量代谢异常与自身免疫性疾病相关研究进展进行综述。
CD4+ T cells play an important role in the body’s immune system. According to different functions after activation, they can be divided into helper T cells (T helper cells, Th) and regulatory T cells (Treg). Th includes Th1, Th2 , Th9, Th17, Th22 and other subgroups. CD4+ T cells undergo metabolic reprogramming during development, activation, and mediating immune responses to meet their corresponding energy needs. Abnormal energy metabolism of CD4+ T cells can lead to immune dys-function and play an important role in autoimmune diseases. This article mainly reviews the re-search progress of abnormal energy metabolism of CD4+ T cell subsets and autoimmune diseases.

References

[1]  Taniuchi, I. (2018) CD4 Helper and CD8 Cytotoxic T Cell Differentiation. Annual Review of Immunology, 36, 579-601.
https://doi.org/10.1146/annurev-immunol-042617-053411
[2]  Almeida, L., et al. (2021) CD4 T-Cell Differentia-tion and Function: Unifying Glycolysis, Fatty Acid Oxidation, Polyamines NAD Mitochondria. The Journal of Allergy and Clinical Immunology, 148, 16-32.
https://doi.org/10.1016/j.jaci.2021.03.033
[3]  Wang, R., et al. (2011) The Transcription Factor Myc Controls Metabolic Reprogramming upon T Lymphocyte Activation. Immunity, 35, 871-882.
https://doi.org/10.1016/j.immuni.2011.09.021
[4]  D’Souza, A.D., et al. (2007) Convergence of Multiple Signaling Pathways Is Required to Coordinately Up-Regulate mtDNA and Mitochondrial Biogenesis during T Cell Activation. Mi-tochondrion, 7, 374-385.
https://doi.org/10.1016/j.mito.2007.08.001
[5]  MacIver, N.J., Michalek, R.D. and Rathmell, J.C. (2013) Metabolic Regulation of T Lymphocytes. Annual Review of Immunology, 31, 259-283.
https://doi.org/10.1146/annurev-immunol-032712-095956
[6]  Nakajima, H. and Kunimoto, H. (2014) TET2 as an Epigenetic Master Regulator for Normal and Malignant Hematopoiesis. Cancer Science, 105, 1093-1099.
https://doi.org/10.1111/cas.12484
[7]  Raposo, B., Vaartjes, D., Ahlqvist, E., Nandakumar, K.-S. and Holmdahl, R. (2015) System A Amino Acid Transporters Regulate Glutamine Uptake and Attenuate Antibody-Mediated Arthritis. Immunology, 146, 607-617.
https://doi.org/10.1111/imm.12531
[8]  Johnson, M.O., et al. (2018) Distinct Regulation of Th17 and Th1 Cell Differentiation by Glutaminase-Dependent Metabolism. Cell, 175, 1780-1795.e19.
https://doi.org/10.1016/j.cell.2018.10.001
[9]  Wolfson, R.L., et al. (2016) Sestrin2 Is a Leucine Sensor for the mTORC1 Pathway. Science (New York, N.Y.), 351, 43-48.
https://doi.org/10.1126/science.aab2674
[10]  Haghikia, A., et al. (2015) Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine. Immunity, 43, 817-829.
https://doi.org/10.1016/j.immuni.2015.09.007
[11]  Zeng, H., et al. (2016) mTORC1 and mTORC2 Kinase Signaling and Glucose Metabolism Drive Follicular Helper T Cell Differentiation. Immunity, 45, 540-554.
https://doi.org/10.1016/j.immuni.2016.08.017
[12]  Shehade, H., et al. (2015) Cutting Edge: Hypox-ia-Inducible Factor 1 Negatively Regulates Th1 Function. Journal of immunology (Baltimore, Md.: 1950), 195, 1372-1376.
https://doi.org/10.4049/jimmunol.1402552
[13]  Macintyre, A.N., et al. (2014) The Glucose Trans-porter Glut1 Is Selectively Essential for CD4 T Cell Activation and Effector Function. Cell Metabolism, 20, 61-72.
https://doi.org/10.1016/j.cmet.2014.05.004
[14]  Guma, M., Tiziani, S. and Firestein, G.S. (2016) Metabolomics in Rheumatic Diseases: Desperately Seeking Biomarkers. Nature Reviews. Rheumatology, 12, 269-281.
https://doi.org/10.1038/nrrheum.2016.1
[15]  Hochrein, S.M., et al. (2022) The Glucose Transporter GLUT3 Con-trols T Helper 17 Cell Responses through Glycolytic-Epigenetic Reprogramming. Cell Metabolism, 34, 516-532.
https://doi.org/10.1016/j.cmet.2022.02.015
[16]  Delgoffe, G.M., et al. (2011) The Kinase mTOR Regulates the Differentiation of Helper T Cells through the Selective Activation of Signaling by mTORC1 and mTORC2. Nature Im-munology, 12, 295-303.
https://doi.org/10.1038/ni.2005
[17]  Kono, M., et al. (2018) Pyruvate Dehydrogenase Phosphatase Catalytic Subunit 2 Limits Th17 Differentiation. Proceedings of the National Academy of Sciences of the United States of America, 115, 9288-9293.
https://doi.org/10.1073/pnas.1805717115
[18]  Berod, L., et al. (2014) De Novo Fatty Acid Synthesis Controls the Fate between Regulatory T and T Helper 17 Cells. Nature Medicine, 20, 1327-1333.
https://doi.org/10.1038/nm.3704
[19]  Howie, D., et al. (2017) Foxp3 Drives Oxidative Phosphorylation and Pro-tection from Lipotoxicity. JCI Insight, 2, e89160.
https://doi.org/10.1172/jci.insight.89160
[20]  Angelin, A., et al. (2017) Foxp3 Reprograms T Cell Metabolism to Function in Low-Glucose, High-Lactate Environments. Cell Metabolism, 25, 1282-1293.e7.
https://doi.org/10.1016/j.cmet.2016.12.018
[21]  Gerriets, V.A., et al. (2016) Foxp3 and Toll-Like Receptor Signaling Balance T Cell Anabolic Metabolism for Suppression. Nature Immunology, 17, 1459-1466.
https://doi.org/10.1038/ni.3577
[22]  De Rosa, V., et al. (2015) Glycolysis Controls the Induction of Human Regu-latory T Cells by Modulating the Expression of FOXP3 Exon 2 Splicing Variants. Nature Immunology, 16, 1174-1184.
https://doi.org/10.1038/ni.3269
[23]  Kishore, M., et al. (2018) Regulatory T Cell Migration Is Dependent on Glu-cokinase-Mediated Glycolysis. Immunity, 48, 831-832.
https://doi.org/10.1016/j.immuni.2018.03.034
[24]  Huppke, B., et al. (2019) Association of Obesity with Multiple Sclerosis Risk and Response to First-Line Disease Modifying Drugs in Children. JAMA Neurology, 76, 1157-1165.
https://doi.org/10.1001/jamaneurol.2019.1997
[25]  Wei, J., Raynor, J., Nguyen, T.-L.M. and Chi, H. (2017) Nutrient and Metabolic Sensing in T Cell Responses. Frontiers in Im-munology, 8, Article No. 247.
https://doi.org/10.3389/fimmu.2017.00247
[26]  Marrodan, M., Farez, M.F., Bal-buena Aguirre, M.E. and Correale, J. (2021) Obesity and the Risk of Multiple Sclerosis. The Role of Leptin. Annals of Clinical and Translational Neurology, 8, 406-424.
https://doi.org/10.1002/acn3.51291
[27]  Gerriets, V.A., et al. (2016) Leptin Directly Promotes T-Cell Glycolytic Metabolism to Drive Effector T-Cell Differentiation in a Mouse Mod-el of Autoimmunity. European Journal of Immunology, 46, 1970-1983.
https://doi.org/10.1002/eji.201545861
[28]  Matarese, G., et al. (2001) Requirement for Leptin in the Induction and Progression of Autoimmune Encephalomyelitis. Journal of Immunology (Baltimore, Md.: 1950), 166, 5909-5916.
https://doi.org/10.4049/jimmunol.166.10.5909
[29]  De Rosa, V., et al. (2006) Leptin Neutralization Interferes with Pathogenic T Cell Autoreactivity in Autoimmune Encephalomyelitis. The Journal of Clinical Investigation, 116, 447-455.
https://doi.org/10.1172/JCI26523
[30]  Gerriets, V.A., et al. (2015) Metabolic Programming and PDHK1 Control CD4+ T Cell Subsets and Inflammation. The Journal of Clinical Investigation, 125, 194-207.
https://doi.org/10.1172/JCI76012
[31]  Shi, L.Z., et al. (2011) HIF1alpha-Dependent Glycolytic Pathway Orches-trates a Metabolic Checkpoint for the Differentiation of TH17 and Treg Cells. The Journal of Experimental Medicine, 208, 1367-1376.
https://doi.org/10.1084/jem.20110278
[32]  Sun, Y., et al. (2016) Metformin Ameliorates the Development of Ex-perimental Autoimmune Encephalomyelitis by Regulating T Helper 17 and Regulatory T Cells in Mice. Journal of neu-roImmunology, 292, 58-67.
https://doi.org/10.1016/j.jneuroim.2016.01.014
[33]  DiToro, D., et al. (2020) Insulin-Like Growth Factors Are Key Regulators of T Helper 17 Regulatory T Cell Balance in Autoimmunity. Immunity, 52, 650-667.e10.
https://doi.org/10.1016/j.immuni.2020.03.013
[34]  Carbone, F., et al. (2014) Regulatory T Cell Proliferative Poten-tial Is Impaired in Human Autoimmune Disease. Nature Medicine, 20, 69-74.
https://doi.org/10.1038/nm.3411
[35]  De Riccardis, L., et al. (2016) Metabolic Response to Glatiramer Acetate Therapy in Multiple Sclerosis Patients. BBA Clinical, 6, 131-137.
https://doi.org/10.1016/j.bbacli.2016.10.004
[36]  Wang, X., Cheng, H., Shen, Y.G. and Li, B. (2021) Metabolic Choice Tunes Foxp3+ Regulatory T Cell Function. Advances in Experimental Medicine and Biology, 1278, 81-94.
https://doi.org/10.1007/978-981-15-6407-9_5
[37]  Ohkura, N., et al. (2020) Regulatory T Cell-Specific Epige-nomic Region Variants Are a Key Determinant of Susceptibility to Common Autoimmune Diseases. Immunity, 52, 1119-1132.e4.
https://doi.org/10.1016/j.immuni.2020.04.006
[38]  La Rocca, C., et al. (2017) Immunometabolic Profiling of T Cells from Patients with Relapsing-Remitting Multiple Sclerosis Reveals an Impairment in Glycolysis and Mitochondrial Respiration. Metabolism: Clinical and Experimental, 77, 39-46.
https://doi.org/10.1016/j.metabol.2017.08.011
[39]  Thiruppathi, M., et al. (2012) Impaired Regulatory Function in Circulating CD4(+)CD25(high)CD127(low/-) T Cells in Patients with Myasthenia Gravis. Clinical Immunology (Or-lando, Fla.), 145, 209-223.
https://doi.org/10.1016/j.clim.2012.09.012
[40]  Li, Z., et al. (2020) Glucose Metabolism Pattern of Peripheral Blood Immune Cells in Myasthenia Gravis Patients. Annals of Translational Medicine, 8, Article No. 577.
https://doi.org/10.21037/atm-20-918
[41]  王娜, 等. 重症肌无力外周血调节性T细胞线粒体自噬异常的研究[J]. 中国神经免疫学和神经病学杂志, 2017. 24(4): 270-275.
[42]  Xu, W.H., et al. (2012) Changes of Treg-Associated Molecules on CD4+CD25+Treg Cells in Myasthenia Gravis and Effects of Immunosuppressants. Jour-nal of Clinical Immunology, 32, 975-983.
https://doi.org/10.1007/s10875-012-9685-0
[43]  Liu, R.T., et al. (2018) Enhanced Glycolysis Contributes to the Pathogenesis of Experimental Autoimmune Neuritis. Journal of Neuroinflammation, 15, Article No. 51.
https://doi.org/10.1186/s12974-018-1095-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133