|
厌氧发酵中微生物与磺胺类抗生素相互影响的研究进展
|
Abstract:
厌氧发酵技术是处理畜禽粪污的有效手段之一。畜禽粪污中含有的多种抗生素,通过影响厌氧发酵菌群的活性,造成发酵系统内有机物含量与组成发生变化,从而影响厌氧发酵的稳定运行,降低产气效率。与此同时,抗生素在厌氧环境下也会被厌氧微生物所降解。本文总结了磺胺类抗生素对厌氧发酵过程中微生物的影响,综述了生物降解磺胺类抗生素的菌群、效果及降解途径,为降低磺胺类抗生素对厌氧发酵效率的影响和提高磺胺类抗生素生物降解效果具有一定的指导意义。
The technology of anaerobic fermentation was one of the effective means to treat livestock manure. A variety of antibiotics contained in livestock manure affected the activity of anaerobic fermentation bacteria, resulting in changes in the content and composition of organic matter in the fermentation system, which affected the stable operation of anaerobic fermentation and reduced the gas production efficiency. At the same time, antibiotics can be degraded by anaerobic microorganisms in anaerobic environment. This paper summarized the effects of sulfonamide antibiotics on microorganisms in the process of anaerobic fermentation. The degrading bacteria, degradation effect and degradation pathway of sulfonamide antibiotics were reviewed. It had important significance for reducing the impact of sulfonamide antibiotics on anaerobic fermentation efficiency and improving the biodegradation effect of sulfonamide antibiotics.
[1] | Angelidaki, I., Sanders, W., Sanders, W., et al. (2004) Assessment of the Anaerobic Biodegradability of Macropollutants. Reviews in Environmental Science and Biotechnology, 3, 117-129. https://doi.org/10.1007/s11157-004-2502-3 |
[2] | Hansen, T.L., Schmidt, J.E., Angelidaki, I., et al. (2004) Method for Determination of Methane Potentials of Solid Organic Waste. Waste Management, 24, 393. https://doi.org/10.1016/j.wasman.2003.09.009 |
[3] | Liu, L., Liu, C., Zheng, J., et al. (2013) Elimination of Veterinary Antibiotics and Antibiotic Resistance Genes from Swine Wastewater in the Vertical Flow Constructed Wetlands. Chemosphere, 91, 1088-1093.
https://doi.org/10.1016/j.chemosphere.2013.01.007 |
[4] | Tappe, W., Herbst, M., Hofmann, D., et al. (2013) Degradation of Sulfadiazine by Microbacterium lacus Strain SDZm4, Isolated from Lysimeters Previously Manured with Slurry from Sulfadiazine-Medicated Pigs. Applied Environmental Microbiology, 79, 2572-2577. https://doi.org/10.1128/AEM.03636-12 |
[5] | Roose-Amsaleg, C.L.A.M. (2016) Do Antibiotics Have Envi-ronmental Side-Effects? Impact of Synthetic Antibiotics on Biogeochemical Processes. Environmental Science and Pollution Research, 23, 4000-4012.
https://doi.org/10.1007/s11356-015-4943-3 |
[6] | 范超, 王欣, 刘伟, 等. 抗生素对鸡粪厌氧发酵过程影响的实验研究[J]. 黑龙江科学, 2016, 12(22): 1-3. |
[7] | Loftin, K.A., Henny, C., Adams, C.D., et al. (2005) Inhibition of Microbial Metabolism in Anaerobic Lagoons by Selected Sulfonamides, Tetracyclines, Lincomycin, and Tylosin Tartrate. Environmental Toxicology and Chemistry, 24, 782-788. https://doi.org/10.1897/04-093R.1 |
[8] | Cetecioglu, Z., Ince, B., Orhon, D., et al. (2012) Acute Inhibitory Impact of Antimicrobials on Acetoclastic Methanogenic Activity. Bioresource Technology, 114, 109-116. https://doi.org/10.1016/j.biortech.2012.03.020 |
[9] | Mitchell, S.M., Ullman, J.L., Teel, A.L., et al. (2013) The Effects of the Antibiotics Ampicillin, Florfenicol, Sulfamethazine, and Tylosin on Biogas Production and Their Degradation Efficiency during Anaerobic Digestion. Bioresource Technology, 149, 244-252. https://doi.org/10.1016/j.biortech.2013.09.048 |
[10] | Baran, W., Adamek, E., Ziemianska, J., et al. (2011) Ef-fects of the Presence of Sulfonamides in the Environment and Their Influence on Human Health. Journal of Haz-ardous Materials, 196, 1-15.
https://doi.org/10.1016/j.jhazmat.2011.08.082 |
[11] | Aydin, S., Ince, B. and Ince, O. (2015) Inhibitory Effect of Erythromycin, Tetracycline and Sulfamethoxazole Antibiotics on Anaerobic Treatment of a Pharmaceutical Wastewater. Water Science and Technology, 71, 1620-1628.
https://doi.org/10.2166/wst.2015.126 |
[12] | Aydin, S., Cetecioglu, Z., Arikan, O., et al. (2015) Inhibitory Effects of Antibiotic Combinations on Syntrophic Bacteria, Homoacetogens and Methanogens. Chemosphere, 120, 515-520.
https://doi.org/10.1016/j.chemosphere.2014.09.045 |
[13] | Cetecioglu, Z., Ince, B., Orhon, D., et al. (2016) Anaerobic Sulfamethoxazole Degradation Is Driven by Homoacetogenesis Coupled with Hydrogenotrophic Methanogenesis. Water Research, 90, 79-89.
https://doi.org/10.1016/j.watres.2015.12.013 |
[14] | Bauer, A., Lizasoain, J., Nettmann, E., et al. (2014) Effects of the Antibiotics Chlortetracycline and Enrofloxacin on the Anaerobic Digestion in Continuous Experiments. Bi-oenergy Research, 7, 1244-1252.
https://doi.org/10.1007/s12155-014-9458-0 |
[15] | Wang, S., Yuan, R., Chen, H., et al. (2020) Effect of Sul-fonamides on the Dissolved Organic Matter Fluorescence in Biogas Slurry during Anaerobic Fermentation According to the PARAFAC Analysis. Process Safety and Environmental Protection, 144, 253-262. https://doi.org/10.1016/j.psep.2020.07.033 |
[16] | Lallai, A., Mura, G. and Onnis, N. (2002) The Effects of Certain Antibiotics on Biogas Production in the Anaerobic Digestion of Pig Waste Slurry. Bioresource Technology, 82, 205-208. https://doi.org/10.1016/S0960-8524(01)00162-6 |
[17] | Aydin, S., Ince, B. and Ince, O. (2015) Application of Real-Time PCR to Determination of Combined Effect of Antibiotics on Bacteria, Methanogenic Archaea, Archaea in Anaerobic Sequencing Batch Reactors. Water Research, 76, 88-98. https://doi.org/10.1016/j.watres.2015.02.043 |
[18] | Zhi, D., Yang, D., Zheng, Y., et al. (2019) Current Progress in the Adsorption, Transport and Biodegradation of Antibiotics in Soil. Journal of Environmental Management, 251, Article ID: 109598.
https://doi.org/10.1016/j.jenvman.2019.109598 |
[19] | Zheng, W., Wen, X., Zhang, B., et al. (2019) Selective Effect and Elimination of Antibiotics in Membrane Bioreactor of Urban Wastewater Treatment Plant. Science of the Total Environment, 646, 1293-1303.
https://doi.org/10.1016/j.scitotenv.2018.07.400 |
[20] | Bouju, H., Ricken, B., Beffa, T., et al. (2012) Isolation of Bacterial Strains Capable of Sulfamethoxazole Mineralization from an Acclimated Membrane Bioreactor. Applied Environmental Microbiology, 78, 277-279.
https://doi.org/10.1128/AEM.05888-11 |
[21] | Birkigt, J., Gilevska, T., Ricken, B., et al. (2015) Carbon Stable Isotope Fractionation of Sulfamethoxazole during Biodegradation by Microbacterium sp. Strain BR1 and upon Direct Photolysis. Environmental Science Technology, 49, 6029-6036. https://doi.org/10.1021/acs.est.5b00367 |
[22] | Herzog, B., Lemmer, H., Horn, H., et al. (2013) Characterization of Pure Cultures Isolated from Sulfamethoxazole-Acclimated Activated Sludge with Respect to Taxonomic Identi-fication and Sulfamethoxazole Biodegradation Potential. BMC Microbiology, 13, 276-286. https://doi.org/10.1186/1471-2180-13-276 |
[23] | Reis, P.J., Reis, A.C., Ricken, B., et al. (2014) Biodegradation of Sulfamethoxazole and Other Sulfonamides by Achromobacter denitrificans PR1. Journal of Hazardous Materials, 280, 741-749.
https://doi.org/10.1016/j.jhazmat.2014.08.039 |
[24] | Deng, Y., Mao, Y., Li, B., et al. (2016) Aerobic Degrada-tion of Sulfadiazine by Arthrobacter spp.: Kinetics, Pathways, and Genomic Characterization. Environmental Sci-ence Technology, 50, 9566-9575.
https://doi.org/10.1021/acs.est.6b02231 |
[25] | Wang, S. and Wang, J. (2018) Biodegradation and Metabolic Pathway of Sulfamethoxazole by a Novel Strain Acinetobacter sp. Applied Microbiology and Biotechnology, 102, 425-432. https://doi.org/10.1007/s00253-017-8562-4 |
[26] | Oliveira, G.H.D., Santos-Neto, A.J. and Zaiat, M. (2017) Removal of the Veterinary Antimicrobial Sulfamethazine in a Horizontal-Flow Anaerobic Immobilized Biomass (HAIB) Reactor Subjected to Step Changes in the Applied Organic Loading Rate. Journal of Environmental Management, 204, 674-683. https://doi.org/10.1016/j.jenvman.2017.09.048 |
[27] | Mulla, S.I., Sun, Q., Hu, A., et al. (2016) Evaluation of Sulfadiazine Degradation in Three Newly Isolated Pure Bacterial Cultures. PLOS ONE, 11, 13-27. https://doi.org/10.1371/journal.pone.0165013 |
[28] | Zhang, W., Xu, D., Niu, Z., et al. (2012) Isolation and Characterization of Pseudomonas sp. DX7 Capable of Degrading Sulfadoxine. Biodegradation, 23, 431-439. https://doi.org/10.1007/s10532-011-9522-9 |
[29] | Zhang, W.W., Wen, Y.Y., Niu, Z.L., et al. (2012) Isolation and Characterization of Sulfonamide-Degrading Bacteria Escherichia sp. HS21 and Acinetobacter sp. HS51. World Journal of Microbiology and Biotechnology, 28, 447-452.
https://doi.org/10.1007/s11274-011-0834-z |
[30] | Nguyen, P.Y., Carvalho, G., Polesel, F., et al. (2018) Bio-augmentation of Activated Sludge with Achromobacter denitrificans PR1 for Enhancing the Biotransformation of Sulfamethoxazole and Its Human Conjugates in Real Wastewater: Kinetic Tests and Modelling. Chemical Engi-neering Journal, 352, 79-89. https://doi.org/10.1016/j.cej.2018.07.011 |
[31] | Topp, E., Chapman, R., Devers-Lamrani, M., et al. (2013) Accelerated Biodegradation of Veterinary Antibiotics in Agricultural Soil Fol-lowing Long-Term Exposure, and Isolation of a Sulfamethazine-Degrading Microbacterium sp. Journal of Envi-ronmental Quality, 42, 173-178. https://doi.org/10.2134/jeq2012.0162 |
[32] | Islas-Espinoza, M., Reid, B.J., Wexler, M., et al. (2012) Soil Bacterial Consortia and Previous Exposure Enhance the Biodegradation of Sulfona-mides from Pig Manure. Microbial Ecology, 64, 140-151.
https://doi.org/10.1007/s00248-012-0010-5 |
[33] | Larcher, S. and Yargeau, V. (2011) Biodegradation of Sul-famethoxazole by Individual and Mixed Bacteria. Applied Microbiology and Biotechnology, 91, 211-218. https://doi.org/10.1007/s00253-011-3257-8 |
[34] | Mao, F., Liu, X., Wu, K., et al. (2018) Biodegradation of Sulfonamides by Shewanella oneidensis MR-1 and Shewanella sp. Strain MR-4. Biodegradation, 29, 129-140. https://doi.org/10.1007/s10532-017-9818-5 |
[35] | Yang, C.W., Hsiao, W.C. and Chang, B.V. (2016) Biodeg-radation of Sulfonamide Antibiotics in Sludge. Chemosphere, 150, 559-565. https://doi.org/10.1016/j.chemosphere.2016.02.064 |
[36] | Liao, X., Li, B., Zou, R., et al. (2016) Antibiotic Sulfanilamide Biodegradation by Acclimated Microbial Populations. Applied Microbiology and Biotechnology, 100, 2439-2447. https://doi.org/10.1007/s00253-015-7133-9 |
[37] | Miran, W., Jang, J., Nawaz, M., et al. (2018) Biodegradation of the Sulfonamide Antibiotic Sulfamethoxazole by Sulfamethoxazole Acclimatized Cultures in Microbial Fuel Cells. Science of the Total Environment, 627, 1058-1065.
https://doi.org/10.1016/j.scitotenv.2018.01.326 |
[38] | Xu, B., Mao, D., Luo, Y., et al. (2011) Sulfamethoxazole Biodegradation and Biotransformation in the Water-Sediment System of a Natural River. Bioresource Technology, 102, 7069-7076.
https://doi.org/10.1016/j.biortech.2011.04.086 |
[39] | Wang, L., Wu, Y., Zheng, Y., et al. (2015) Efficient Degradation of Sulfamethoxazole and the Response of Microbial Communities in Microbial Fuel Cells. RSC Ad-vances, 5, 56430-56437. https://doi.org/10.1039/C5RA08438E |
[40] | Wang, B., Ni, B.J., Yuan, Z., et al. (2019) Insight into the Nitrification Kinetics and Microbial Response of an Enriched Nitrifying Sludge in the Biodegradation of Sulfadiazine. Environmental Pollution, 255, Article ID: 113160.
https://doi.org/10.1016/j.envpol.2019.113160 |
[41] | Peng, J., Wu, E., Wang, N., et al. (2019) Removal of Sul-fonamide Antibiotics from Water by Adsorption and Persulfate Oxidation Process. Journal of Molecular Liquids, 274, 632-638. https://doi.org/10.1016/j.molliq.2018.11.034 |
[42] | Cao, L., Zhang, J., Zhao, R., et al. (2019) Genomic Characterization, Kinetics, and Pathways of Sulfamethazine Biodegradation by Paenarthrobacter sp. A01. Environment International, 131, 104961-104973.
https://doi.org/10.1016/j.envint.2019.104961 |
[43] | Chang, H., Hu, J., Wang, L., et al. (2008) Occurrence of Sulfonamide Antibiotics in Sewage Treatment Plants. Chinese Science Bulletin, 53, 514-520. https://doi.org/10.1007/s11434-008-0123-x |
[44] | Gobel, A., McArdell, C.S., Joss, A., et al. (2007) Fate of Sulfonamides, Macrolides, and Trimethoprim in Different Wastewater Treatment Technologies. Science of the Total Environment, 372, 361-371.
https://doi.org/10.1016/j.scitotenv.2006.07.039 |
[45] | Torresi, E., Escola Casas, M., Polesel, F., et al. (2017) Impact of External Carbon Dose on the Removal of Micropollutants Using Methanol and Ethanol in Post-Denitrifying Moving Bed Biofilm Reactors. Water Research, 108, 95-105.
https://doi.org/10.1016/j.watres.2016.10.068 |
[46] | Wu, M.H., Que, C.J., Xu, G., et al. (2016) Occurrence, Fate and Interrelation of Selected Antibiotics in Sewage Treatment Plants and Their Receiving Surface Water. Ecotoxi-cology and Environmental Safety, 132, 132-139.
https://doi.org/10.1016/j.ecoenv.2016.06.006 |
[47] | Xu, W., Zhang, G., Li, X., et al. (2007) Occurrence and Elimination of Antibiotics at Four Sewage Treatment Plants in the Pearl River Delta (PRD), South China. Water Research, 41, 4526-4534.
https://doi.org/10.1016/j.watres.2007.06.023 |
[48] | Yuan, X., Qiang, Z., Ben, W., et al. (2014) Rapid Detection of Multiple Class Pharmaceuticals in Both Municipal Wastewater and Sludge with Ultra High Performance Liquid Chromatography Tandem Mass Spectrometry. Journal of Environmental Sciences—China, 26, 1949-1959. https://doi.org/10.1016/j.jes.2014.06.022 |
[49] | Alexy, R., Kumpel, T. and Kummerer, K. (2004) Assessment of Degradation of 18 Antibiotics in the Closed Bottle Test. Chemosphere, 57, 505-512. https://doi.org/10.1016/j.chemosphere.2004.06.024 |
[50] | Li, Y., Liu, B., Zhang, X., et al. (2016) The Distri-bution of Veterinary Antibiotics in the River System in a Livestock-Producing Region and Interactions between Different Phases. Environmental Science Pollution Research, 23, 16542-16551. https://doi.org/10.1007/s11356-016-6677-2 |
[51] | Yang, S.F., Lin, C.F., Wu, C.J., et al. (2012) Fate of Sul-fonamide Antibiotics in Contact with Activated Sludge-Sorption and Biodegradation. Water Research, 46, 1301-1308. https://doi.org/10.1016/j.watres.2011.12.035 |
[52] | Yang, N., Wan, J., Zhao, S., et al. (2015) Re-moval of Concentrated Sulfamethazine by Acclimatized Aerobic Sludge and Possible Metabolic Products. PeerJ, 3, 1359-1374. https://doi.org/10.7717/peerj.1359 |
[53] | Accinelli, C., Koskinen, W.C., Becker, J.M., et al. (2007) Environmental Fate of Two Sulfonamide Antimicrobial Agents in Soil. Journal of Agricultural and Food Chemistry, 55, 2677-2682. https://doi.org/10.1021/jf063709j |
[54] | Yang, J.F., Ying, G.G., Yang, L.H., et al. (2009) Deg-radation Behavior of Sulfadiazine in Soils under Different Conditions. Journal of Environmental Science and Health Part B, 44, 241-248. https://doi.org/10.1080/03601230902728245 |
[55] | Engelhardt, I., Sittig, S., Simunek, J., et al. (2015) Fate of the Antibiotic Sulfadiazine in Natural Soils: Experimental and Numerical Investigations. Journal of Contaminant Hydrology, 177-178, 30-42.
https://doi.org/10.1016/j.jconhyd.2015.02.006 |
[56] | Richter, D., Massmann, G. and Dunnbier, U. (2008) Be-haviour and Biodegradation of Sulfonamides (p-TSA, o-TSA, BSA) during Drinking Water Treatment. Chemosphere, 71, 1574-1581.
https://doi.org/10.1016/j.chemosphere.2007.11.026 |
[57] | Adamek, E., Baran, W. and Sobczak, A. (2016) As-sessment of the Biodegradability of Selected Sulfa Drugs in Two Polluted Rivers in Poland: Effects of Seasonal Variations, Accidental Contamination, Turbidity and Salinity. Journal of Hazardous Materials, 313, 147-158. https://doi.org/10.1016/j.jhazmat.2016.03.064 |
[58] | Jia, Y., Khanal, S.K., Zhang, H., et al. (2017) Sulfameth-oxazole Degradation in Anaerobic Sulfate-Reducing Bacteria Sludge System. Water Research, 119, 12-20. https://doi.org/10.1016/j.watres.2017.04.040 |
[59] | Cetecioglu, Z., Ince, B., Gros, M., et al. (2015) Biodegra-dation and Reversible Inhibitory Impact of Sulfamethoxazole on the Utilization of Volatile Fatty Acids during Anaerobic Treatment of Pharmaceutical Industry Wastewater. Science of the Total Environmental, 536, 667-674. https://doi.org/10.1016/j.scitotenv.2015.07.139 |
[60] | Alvarino, T., Nastold, P., Suarez, S., et al. (2016) Role of Biotransformation, Sorption and Mineralization of 14C-Labelled Sulfamethoxazole under Different Redox Condi-tions. Science of the Total Environment, 542, 706-715.
https://doi.org/10.1016/j.scitotenv.2015.10.140 |
[61] | Oliveira, G.H., Santos-Neto, A.J. and Zaiat, M. (2016) Evaluation of Sulfamethazine Sorption and Biodegradation by Anaerobic Granular Sludge Using Batch Experiments. Bioprocess and Biosystems Engineering, 39, 115-124.
https://doi.org/10.1007/s00449-015-1495-3 |
[62] | Lai, H.T., Wang, T.S. and Chou, C.C. (2011) Implication of Light Sources and Microbial Activities on Degradation of Sulfonamides in Water and Sediment from a Marine Shrimp Pond. Bioresource Technology, 102, 5017-5023.
https://doi.org/10.1016/j.biortech.2011.01.070 |
[63] | Zhang, Y., Xu, J., Zhong, Z., et al. (2013) Degradation of Sulfonamides Antibiotics in Lake Water and Sediment. Environmental Science and Pollution Research, 20, 2372-2380. https://doi.org/10.1007/s11356-012-1121-8 |
[64] | Bennett, K.A., Kelly, S.D., Tang, X., et al. (2017) Potential for Natural and Enhanced Attenuation of Sulphanilamide in a Contaminated Chalk Aquifer. Journal of Environmental Sciences—China, 62, 39-48.
https://doi.org/10.1016/j.jes.2017.08.010 |
[65] | Mohring, S.A.I., Strzysch, I., Fernandes, M.R., et al. (2009) Degradation and Elimination of Various Sulfonamides during Anaerobic Fermentation: A Promising Step on the Way to Sustainable Pharmacy? Environmental Science Technology, 43, 2569-2574. https://doi.org/10.1021/es802042d |
[66] | Chu, Y.-X., Fang, C.-R., Wang, H., et al. (2017) Degradation of Sul-fonamides during Anaerobic Composting of Swine Manure. Chemistry and Ecology, 33, 339-351. https://doi.org/10.1080/02757540.2017.1303049 |
[67] | Feng, L., Wahid, R., Ward, A.J., et al. (2017) Anaerobic Co-Digestion of Cattle Manure and Meadow Grass: Effect of Serial Configurations of Continuous Stirred Tank Reactors (CSTRs). Biosystems Engineering, 160, 1-11.
https://doi.org/10.1016/j.biosystemseng.2017.05.002 |
[68] | Jin, H., Xu, C., Du, J., et al. (2017) Distribution of Sulfonamides in Liquid and Solid Anaerobic Digestates: Effects of Hydraulic Retention Time and Swine Manure to Rice Straw Ratio. Bioprocess and Biosystems Engineering, 40, 319-330. https://doi.org/10.1007/s00449-016-1699-1 |
[69] | Bing, L. and Tong, Z. (2010) Biodegradation and Adsorption of Antibiotics in the Activated Sludge Process. Environmental Science and Technology, 44, 3468-3473. https://doi.org/10.1021/es903490h |
[70] | 靳红梅, 许彩云, 黄红英, 等. 猪粪中温厌氧消化中磺胺类抗生素的降解和吸附特征[J]. 农业环境科学学报, 2017, 36(9): 1884-1892. |
[71] | Feng, L., Casas, M.E., Ottosen, L.D.M., et al. (2017) Removal of Antibiotics during the Anaerobic Digestion of Pig Manure. Science of the Total Environment, 603-604, 219-225. https://doi.org/10.1016/j.scitotenv.2017.05.280 |
[72] | Spielmeyer, A., Breier, B., Groissmeier, K., et al. (2015) Elimination Patterns of Worldwide Used Sulfonamides and Tetracyclines during Anaerobic Fermentation. Bioresource Technology, 193, 307-314.
https://doi.org/10.1016/j.biortech.2015.06.081 |
[73] | Ricken, B., Corvini, P.F., Cichocka, D., et al. (2013) Ipso-Hydroxylation and Subsequent Fragmentation: A Novel Microbial Strategy to Eliminate Sulfonamide Antibiotics. Applied Environmental Microbiology, 79, 5550-5558.
https://doi.org/10.1128/AEM.00911-13 |
[74] | Wang, S., Yuan, R., Chen, H., et al. (2021) Anaerobic Biodegradation of Four Sulfanilamide Antibiotics: Kinetics, Pathways and Microbiological Studies. Journal of Hazardous Materials, 416, Article ID: 125840.
https://doi.org/10.1016/j.jhazmat.2021.125840 |