|
电化学催化1,4-萘醌的双官能团化反应构建碘代氨基萘醌化合物
|
Abstract:
氨基萘醌类化合物是一类具有重要生理活性的杂环化合物,广泛存在于天然产物的结构中。因此,高效构建该类化合物具有重要的意义。本文以碘化钠为媒介,在电化学条件下实现了1,4萘醌的双官能团化反应,以33%~70%的收率得到了8种含不同取代基的碘代氨基萘醌类化合物,并通过自由基捕获实验验证该反应可能涉及自由基机理。
Aminonaphthoquinones widely exist in natural products and have good biological activities. The synthesis of this kind of compounds has always been a hotspot for scientists. In this work, iodoaminonaphthoquinones with different substituents were synthesized by the bifunctionalization of 1,4-naphthoquinone in the medium of sodium iodide under electrochemical conditions. Through oxidation additions, eight iodoaminonaphthoquinones with different substituents were synthesized in 33%~70% yield under the optimal conditions. The free radical capture experiment verified that the reaction may involve the free radical mechanism.
[1] | Yuan, Y. and Lei, A. (2019) Electrochemical Oxidative Cross-Coupling with Hydrogen Evolution Reactions. Accounts of Chemical Research, 52, 3309-3324. https://doi.org/10.1021/acs.accounts.9b00512 |
[2] | Tong, S., Li, K., Ouyang, X., Song, R. and Li, J. (2021) Recent Advances in the Radical-Mediated Decyanative Alkylation of Cyano(hetero)arene. Green Synthesis and Catalysis, 2, 145-155. https://doi.org/10.1016/j.gresc.2021.04.003 |
[3] | Wei, B., Qin, J.-H., Yang, Y.-Z., Xie, Y.-X., Ouyang, X.-H. and Song, R.-J. (2022) Electrochemical Radical C(sp3)-H Arylation of Xanthenes with Electron-Rich Arenes. Organic Chemistry Frontiers, 9, 816-821.
https://doi.org/10.1039/D1QO01714D |
[4] | Wu, Y.-C., Song, R.-J. and Li, J.-H. (2020) Recent Advances in Photoelectrochemical Cells (PECs) for Organic Synthesis. Organic Chemistry Frontiers, 7, 1895-1902. https://doi.org/10.1039/D0QO00486C |
[5] | Chan, K.Y., Zhang, J. and Chang, C.-W.T. (2011) Mode of Action Investigation for the Antibacterial Cationic Anthraquinone Analogs. Bioorganic & Medicinal Chemistry Letters, 21, 6353-6356.
https://doi.org/10.1016/j.bmcl.2011.08.107 |
[6] | Wu, Y.-C., Jiang, S.-S., Song, R.-J. and Li, J.-H. (2019) A Metal- and Oxidizing-Reagent-Free Anodic Para-Selective Amination of Anilines with Phenothiazines. Chemical Communications, 55, 4371-4374.
https://doi.org/10.1039/C9CC01332F |
[7] | Couladouros, E.A., Plyta, Z.F. and Papageorgiou, V.P. (1996) A General Procedure for the Efficient Synthesis of (Alkylamino)naphthoquinones. The Journal of Organic Chemistry, 61, 3031-3033. https://doi.org/10.1021/jo9517252 |
[8] | Lin, T.S., Xu, S., Zhu, L., Cosby, L.A. and Sartorelli, A.C. (1989) Synthesis of 2,3-diaziridinyl-1,4-naphthoquinonyl Sulfonate Derivatives as Potential Antineoplastic Agents. Journal of Medicinal Chemistry, 32, 1467-1471.
https://doi.org/10.1021/jm00127a012 |
[9] | Lin, T.S., Zhu, L.Y., Xu, S.P., Divo, A.A. and Sartorelli, A.C. (1991) Synthesis and Antimalarial Activity of 2-aziridinyl- and 2,3-bis(aziridinyl)-1,4-naphthoquinonyl Sulfonate and Acylate Derivatives. Journal of Medicinal Chemistry, 34, 1634-1639. https://doi.org/10.1021/jm00109a016 |
[10] | Stefanska, B.J., Dzieduszycka, M.J., Martelli, S., Antonini, I. and Borowski, E. (1993) 2-Amination of Quinizarin via Michael Addition of Hydrazines or Amines. The Journal of Organic Chemistry, 58, 1568-1569.
https://doi.org/10.1021/jo00058a045 |
[11] | Zhang, J., Redman, N., Litke, A.P., Zeng, J., Zhan, J., Chan, K.Y. and Chang, C.-W.T. (2011) Synthesis and Antibacterial Activity Study of a Novel Class of Cationic Anthraquinone Analogs. Bioorganic & Medicinal Chemistry, 19, 498-503. https://doi.org/10.1016/j.bmc.2010.11.001 |
[12] | ?kermark, B., Oslob, J.D. and Heuschert, U. (1995) Catalytic Oxidative Aromatic Cyclizations with Palladium. Tetrahedron Letters, 36, 1325-1326. https://doi.org/10.1016/0040-4039(94)02467-P |
[13] | Firouzabadi, H., Iranpoor, N. and Hazarkhani, H. (2001) Iodine Catalyzes Efficient and Chemoselective Thioacetalization of Carbonyl Functions, Transthioacetalization of O,O- and S,O-Acetals and Acylals. The Journal of Organic Chemistry, 66, 7527-7529. https://doi.org/10.1021/jo015798z |
[14] | Varala, R., Nuvula, S. and Adapa, S.R. (2006) Molecular Iodine-Catalyzed Facile Procedure for N-Boc Protection of Amines. The Journal of Organic Chemistry, 71, 8283-8286. https://doi.org/10.1021/jo0612473 |
[15] | Wang, S., Yu, Y., Chen, X., Zhu, H., Du, P., Liu, G., Lou, L., Li, H. and Wang, W. (2015) FeCl3-Catalyzed Selective Acylation of Amines with 1,3-diketones via C-C Bond Cleavage. Tetrahedron Letters, 56, 3093-3096.
https://doi.org/10.1016/j.tetlet.2014.12.146 |
[16] | Wu, K., Huang, Z., Ma, Y. and Lei, A. (2016) Copper-Catalyzed and Iodide-Promoted Aerobic C-C Bond Cleavage/C-N Bond Formation toward the Synthesis of Amides. RSC Advances, 6, 24349-24352.
https://doi.org/10.1039/C6RA02153K |
[17] | Zhou, W., Fan, W., Jiang, Q., Liang, Y.-F. and Jiao, N. (2015) Copper-Catalyzed Aerobic Oxidative C-C Bond Cleavage of Unstrained Ketones with Air and Amines. Organic Letters, 17, 2542-2545.
https://doi.org/10.1021/acs.orglett.5b01114 |
[18] | Huang, H.-M., Li, Y.-J., Dai, Y.-P., Yu, W.-B., Ye, Q. and Gao, J.-R. (2013) Bifunctionalisation of 1,4-Naphthoquinone by the Oxidative Addition of an Alkylamine and Iodine. Journal of Chemical Research, 37, 34-37.
https://doi.org/10.3184/174751912X13547276507240 |
[19] | Xiong, P. and Xu, H.-C. (2019) Chemistry with Electrochemically Generated N-Centered Radicals. Accounts of Chemical Research, 52, 3339-3350. https://doi.org/10.1021/acs.accounts.9b00472 |