全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Bronsted酸催化串联反应一锅制备3-氨基-1-茚酮
Bronsted Acid-Catalyzed One-Pot Synthesis of 3-Aminoindan-1-Ones through a Domino Reaction

DOI: 10.12677/JOCR.2022.102004, PP. 39-49

Keywords: 3-氨基-1-茚酮,酸催化,串联反应,邻炔基苯甲醛,一锅合成
3-Aminoindan-1-One
, Acid-Catalyzed, Domino Reaction, O-Ethynylbenzaldehyde, One-Pot Synthesis

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要研究了在有机Bronsted酸催化条件下,由邻乙炔基苯甲醛与环状脂肪仲胺经烯胺化/环化/水解串联反应一锅合成3-氨基-1-茚酮类化合物。该方法具有原料易得、底物适用范围广(各种取代的邻乙炔苯甲醛和环状仲胺均可顺利参与)、产率高(81%~97%)、时间较短(5~9 h)、可放大量制备(20 mmol规模)、一锅合成方式操作便捷等优势。
The paper demonstrates the one-pot synthesis of 3-aminoindan-1-ones through the domino enamidation/cyclization/hydrolysis reactions between o-ethynylbenzaldehydes and cyclic aliphatic amines under organic Bronsted acid catalysis. This method possesses many merits, such as the readily available starting materials, broad substrate scope (various substituted o-ethynylbenzaldehydes and cyclic aliphatic amines participated in the reaction successfully), high yields (81%~97%), short reaction time (5~9 h), scalability (20 mmol scale), and convenient one-pot synthetic procedures.

References

[1]  丁俊威, 徐闫, 葛彬, 等. 1-茚酮类化合物及其生物活性的研究进展[J]. 国外医药(抗生素分册), 2018, 39(1): 59-67.
[2]  段义杰, 刘建利, 王翠玲. 茚酮类化合物的研究进展[J]. 有机化学, 2010, 30(7): 988-996.
[3]  Barlow, J.W. and Walsh, J.J. (2010) Synthesis and Evaluation of Dimeric 1,2,3,4-Tetrahydro-naphthalenylamine and Indan-1-ylamine Derivatives with Mast Cell-Stabilising and Anti-Allergic Activity. European Journal of Medicinal Chemistry, 45, 25-37.
https://doi.org/10.1016/j.ejmech.2009.09.020
[4]  Byrne, A.J., Barlow, J.W. and Walsh, J.J. (2011) Synthesis and Pharmacological Evaluation of the Individual Stereoisomers of 3-[methyl(1,2,3,4-tetrahydro-2-naphthalenyl)amino]-1-indanone, a Potent Mast Cell Stabilizing Agent. Bioorganic & Medicinal Chemistry Letters, 21, 1191-1194.
https://doi.org/10.1016/j.bmcl.2010.12.095
[5]  Korotchenko, V.N., Saydmohammed, M., Vollmer, L.L., et al. (2014) In Vivo Structure-Activity Relationship Studies Support Allosteric Targeting of a Dual Specificity Phosphatase. ChemBiochem, 15, 1436-1445.
https://doi.org/10.1002/cbic.201402000
[6]  Day, B.W., Tsang, W.M. and Korotchenko, V.N. (2010) Preparation of Benzylideneindanones and Related Compounds as Inhibitors of Dual Specificity Phosphatase 6 (Dusp6). World Patent 2010108058.
[7]  Omran, Z., Cailly, T., Lescot, E., et al. (2005) Synthesis and Biological Evaluation as AChE Inhibitors of New Indanones and Thiaindanones Related to Donepezil. European Journal of Medicinal Chemistry, 40, 1222-1245.
https://doi.org/10.1016/j.ejmech.2005.07.009
[8]  Davies, S.G., Goddard, E.C., Roberts, P.M., et al. (2015) Enantiopure 3-Amino-Substituted 1-Indanones, 1-Tetralones, and 1-Benzosuberones via Friedel-Crafts Cyclisation of ω-Aryl-β-benzamido Acids. Synlett, 26, 1541-1544.
https://doi.org/10.1055/s-0034-1380675
[9]  Zhang, G., Liang Y.J., Qin, T., et al. (2021) Copper-Catalyzed Asymmetric Hydroamination: A Unified Strategy for the Synthesis of Chiral β-Amino Acid and Its Derivatives. CCS Chemistry, 3, 1737-1745.
https://doi.org/10.31635/ccschem.020.202000434
[10]  Wu, X.Y., Nilsson, P. and Larhed, M. (2004) Microwave-Enhanced Carbonylative Generation of Indanones and 3- Acylaminoindanones. Journal of Organic Chemistry, 70, 346-349.
https://doi.org/10.1021/jo048375g
[11]  Wu, Y.-J. (2006) Michael Addition of 3-bromoinden-1-one: An Expedient Synthesis of 5-bromo-3-trifluoroacetami- doindan-1-one. Tetrahedron Letters, 47, 8459-8461.
https://doi.org/10.1016/j.tetlet.2006.09.151
[12]  Zhang, Y., Liu, Y.H., Zhang, S., et al. (2019) Synthesis of 3-aminoindan-1-one Derivatives from 2-acetylbenzaldehydes and Secondary Amines by Mannich Annulation. Tetrahedron Letters, 60, 1463-1466.
https://doi.org/10.1016/j.tetlet.2019.04.035
[13]  Cui, J.-F., Tang, R., Yang, B., et al. (2019) Metal-Free Cyclocarboamination of ortho-Formyl Phenylacetylenes with Secondary Amines: Access to 1,3-Diamino-1H-Indenes and 3-Amino-1-Indanones. Advanced Synthesis & Catalysis, 361, 569-577.
https://doi.org/10.1002/adsc.201801318
[14]  Verma, A.K., Rustagi, V., Aggarwal, T., et al. (2010) Iodine-Mediated Solvent-Controlled Selective Electrophilic Cyclization and Oxidative Esterification of o-Alkynyl Aldehydes: An Easy Access to Pyranoquinolines, Pyranoquinolinones, and Isocumarins. Journal of Organic Chemistry, 75, 7691-7703.
https://doi.org/10.1021/jo101526b
[15]  Verma, A.K., Aggarwal, T., Rustagi, V., et al. (2010) Iodine-Catalyzed and Solvent-Controlled Selective Electrophilic Cyclization and Oxidative Esterification of ortho-alkynyl Aldehydes. Chemical Communications, 46, 4056-4066.
https://doi.org/10.1039/b927185f
[16]  Ohta, Y., Kubota, Y., Watabe, T., et al. (2009) Rapid Access to 3-(Aminomethyl)isoquinoline-Fused Polycyclic Compounds by Copper-Catalyzed Four-Component Coupling, Cascade Cyclization, and Oxidation. Journal of Organic Chemistry, 74, 6299-6302.
https://doi.org/10.1021/jo901090u
[17]  Phan, D.H.T., Kim, B. and Dong, V.M. (2009) Phthalides by Rhodium-Catalyzed Ketone Hydroacylation. Journal of American Chemical Society, 131, 15608-15609.
https://doi.org/10.1021/ja907711a

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133