The increasing use of big data within the economics
field has led academics and professionals to broaden the investigation of its
consequences in corporate decision-making processes. Until now, scholars and
managers have been focused only on the
technical aspects of big data, without emphasizing the influence they exert on
the effectiveness of decision-making systems. Firstly, this paper aims to
review the literature which concerns the study of the relationship between the
use of big data and its effectiveness incorporate decision-making system. Secondly, it provides
relevant evidence to analyze whether big data acts as a facilitator for
the implementation of advanced decision-making
models and eventually how. In this aspect, our work identifies the keyfactors that support the corporate decision-making
process by proposing a possible corporate governance model. The theoretical
framework that we have adopted relies on big data management studies,
with a specific focus on the implications which show that the use of big data
can generate the decision-making dynamics of companies and organizations. The
current paper provides both theoretical and managerial contributions to the
literature on big data and decision making, defining future perspectives to
advance knowledge in this research area.
References
[1]
Ahmad, S., Miskon, S., Alkanhal, T. A., & Tlili, I. (2020). Modeling of Business Intelligence Systems Using the Potential Determinants and Theories with the Lens of Individual, Technological, Organizational, and Environmental Contexts—A Systematic Literature Review. Applied Sciences, 10, 3208. https://doi.org/10.3390/app10093208
[2]
Ahmed, Z., Mohamed, K., Zeeshan, S., & Dong, X. (2020). Artificial Intelligence with Multi-Functional Machine Learning Platform Development for Better Healthcare and Precision Medicine. Database (Oxford), 2020, baaa010. https://doi.org/10.1093/database/baaa010
[3]
Alavi, M., & Leidner, D. E. (2001). Knowledge Management and Knowledge Management Systems: Conceptual Foundations and Research Issues. MIS Quarterly, 1, 107-136. https://doi.org/10.2307/3250961
[4]
Bouzembrak, Y., & Marvin, H. J. (2016). Prediction of Food Fraud Type Using Data from Rapid Alert System for Food and Feed (RASFF) and Bayesian Network Modelling. Food Control, 61, 180-187. https://doi.org/10.1016/j.foodcont.2015.09.026
[5]
Bury, C. L. (2012). What Is Concurrent Planning, and How Do I Do It? In Handbook for Child Protection Practice (pp. 387-389). Sage. https://doi.org/10.4135/9781452205489.n80
[6]
Canhoto, A. I., & Clear, F. (2020). Artificial Intelligence and Machine Learning as Business Tools: A Framework for Diagnosing Value Destruction Potential. Business Horizons, 63, 183-193. https://doi.org/10.1016/j.bushor.2019.11.003
[7]
Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business Intelligence and Analytics: From Big Data to Big Impact. MIS Quarterly, 36, 1165-1188. https://doi.org/10.2307/41703503
[8]
Ciasullo, M. V., Castellani, P., Rossato, C., & Troisi, O. (2019). Sustainable Business Model Innovation. “Progetto Quid” as an Exploratory Case Study. Sinergie Italian Journal of Management, 37, 213-237. https://doi.org/10.7433/s109.2019.11
[9]
Ciasullo, M. V., Troisi, O., Grimaldi, M., & Leone, D. (2020). Multi-Level Governance for Sustainable Innovation in Smart Communities: An Ecosystems Approach. International Entrepreneurship and Management Journal, 16, 1-29. https://doi.org/10.1007/s11365-020-00641-6
[10]
Coble, K. H., Mishra, A. K., Ferrell, S., & Griffin, T. (2018). Big Data in Agriculture: A Challenge for the Future. Applied Economic Perspectives and Policy, 40, 79-96. https://doi.org/10.1093/aepp/ppx056
[11]
Damminda, A., Nawaratne, R., Xu, Y., De Silva, D., Sivarajah, U., & Gupta, B. (2020). Self-Building Artificial Intelligence and Machine Learning to Empower Big Data Analytics in Smart Cities. Information Systems Frontiers, 1-20.
[12]
Davenport, H. (2013). Multiplicative Number Theory. Springer Science & Business Media, Berlin.
[13]
DeLisle, J. R., Never, B., & Grissom, T. V. (2020). The Big Data Regime Shift in Real Estate. Journal of Property Investment & Finance, 38, 363-395. https://doi.org/10.1108/JPIF-10-2019-0134
[14]
Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial Intelligence for Decision-Making in the Era of Big Data-Evolution, Challenges and Research Agenda. International Journal of Information Management, 48, 63-71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021
[15]
Ferrandez-Pastor, F. J., García-Chamizo, J. M., Nieto-Hidalgo, M., Mora-Pascual, J., & Mora-Martínez, J. (2016). Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture. Sensors, 16, 1141. https://doi.org/10.3390/s16071141
[16]
Gong, B., Liu, R., & Zhang, X. (2020). Market Acceptability Assessment of Electric Vehicles Based on an Improved Stochastic Multicriteria Acceptability Analysis-Evidential Reasoning Approach. Journal of Cleaner Production, 269, Article ID: 121990. https://doi.org/10.1016/j.jclepro.2020.121990
[17]
Gulliver, R., Fahmi, M., & Abramson, D. (2020). Technical Considerations When Implementing Digital Infrastructure for Social Policy. Australian Journal of Social Issues, 56, 269-287. https://doi.org/10.1002/ajs4.135
[18]
Hazen, B. T., Boone, C. A., Ezell, J. D., & Jones-Farmer, L. A. (2014). Data Quality for Data Science, Predictive Analytics, and Big Data in Supply Chain Management: An Introduction to the Problem and Suggestions for Research and Applications. International Journal of Production Economics, 154, 72-80. https://doi.org/10.1016/j.ijpe.2014.04.018
[19]
Hilorme, T., Tkach, K., Dorenskyi, O., Katerna, O., & Durmanov, A. (2019). Decision-Making Model of Introducing Energy-Saving Technologies Based on the Analytic Hierarchy Process. Journal of Management Information and Decision Sciences, 22, 489-494.
[20]
Intezari, A., & Gressel, S. (2017). Information and Reformation in KM systems: Big Data and Strategic Decision-Making. Journal of Knowledge Management, 21, 71-91. https://doi.org/10.1108/JKM-07-2015-0293
[21]
Janssen, M., van der Voort, H., & Wahyudi, A. (2017). Factors Influencing Big Data Decision-Making Quality. Journal of Business Research, 70, 338-345. https://doi.org/10.1016/j.jbusres.2016.08.007
[22]
Jeble, S., Kumari, S., & Patil, Y. (2017). Role of Big Data in Decision Making. Operations and Supply Chain Management: An International Journal, 11, 36-44. https://doi.org/10.31387/oscm0300198
[23]
Jensen, K., Panagiotou, G., & Kouskoumvekaki, I. (2014). Integrated Text Mining and Chemoinformatics Analysis Associates Diet to Health Benefit at Molecular Level. PLOS Computational Biology, 10, e1003432. https://doi.org/10.1371/annotation/96a702bd-85a5-49d9-8fcc-3aad7aa4afa7
[24]
Karaa, W. B. A., Mannai, M., Dey, N., Ashour, A. S., & Olariu, I. (2016). Gene-Disease-Food Relation Extraction from Biomedical Database. In Proceeding of the International Workshop Soft Computing Applications (pp. 394-407). Springer. https://doi.org/10.1007/978-3-319-62521-8_34
[25]
Khan, A. I., & Al-Badi, A. (2020). Emerging Data Sources in Decision-Making and AI. Procedia Computer Science, 177, 318-323. https://doi.org/10.1016/j.procs.2020.10.042
[26]
Kitchenham, B. (2004). Procedures for Performing Systematic Reviews. Keele, UK, Keele University, 33, 1-26.
[27]
Kitchenham, B. A., Mendes, E., & Travassos, G. H. (2007). Cross versus Within-Company Cost Estimation Studies: A Systematic Review. IEEE Transactions on Software Engineering, 33, 316-329. https://doi.org/10.1109/TSE.2007.1001
[28]
Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic Literature Reviews in Software Engineering—A Systematic Literature Review. Information and Software Technology, 51, 7-15. https://doi.org/10.1016/j.infsof.2008.09.009
[29]
Kolasa, K., Goettsch, W., Petrova, G., & Berler, A. (2020). Without Data, You’re Just Another Person with an Opinion. Expert Review of Pharmacoeconomics & Outcomes Research, 20, 147-154. https://doi.org/10.1080/14737167.2020.1751612
[30]
Latif, Z., Lei, W., Latif, S., Pathan, Z. H., Ullah, R., & Jianqiu, Z. (2019). Big Data Challenges: Prioritizing by Decision-Making Process Using Analytic Network Process Technique. Multimedia Tools and Applications, 78, 27127-27153. https://doi.org/10.1007/s11042-017-5161-4
[31]
Lee, J. H., Kang, J., Shim, W., Chung, H. S., & Sung, T. E. (2020). Pattern Detection Model Using a Deep Learning Algorithm for Power Data Analysis in Abnormal Conditions. Electronics, 9, 1140. https://doi.org/10.3390/electronics9071140
[32]
Li, X., & Xu, X. (2018). Optimization and Decision-Making with Big Data. Soft Computing, 22, 5197-5199. https://doi.org/10.1007/s00500-018-3343-2
[33]
Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine Learning in Agriculture: A Review. Sensors, 18, 2674. https://doi.org/10.3390/s18082674
[34]
Lucas Luijckx, N. B., van de Brug, F. J., Leeman, W. R., van der Vossen, J. M., & Cnossen, H. J. (2016). Testing a Text Mining Tool for Emerging Risk Identification. EFSA Supporting Publications, 13, 1154E. https://doi.org/10.2903/sp.efsa.2016.EN-1154
[35]
Ma, S., Zhang, Y., Liu, Y., Yang, H., Lv, J., & Ren, S. (2020). Data-Driven Sustainable Intelligent Manufacturing Based on Demand Response for Energy-Intensive Industries. Journal of Cleaner Production, 274, Article ID: 123155. https://doi.org/10.1016/j.jclepro.2020.123155
[36]
MacKenzie, S. B., Podsakoff, P. M., & Podsakoff, N. P. (2011). Construct Measurement and Validation Procedures in MIS and Behavioral Research: Integrating New and Existing Techniques. MIS Quarterly, 35, 293-334. https://doi.org/10.2307/23044045
[37]
McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012). Big Data: The Management Revolution? Harvard Business Review, 90, 60-68.
[38]
Meng, K., Cao, Y., Peng, X., Prybutok, V., & Youcef-Toumi, K. (2020). Smart Recovery Decision-Making for End-of-Life Products in the Context of Ubiquitous Information and Computational Intelligence. Journal of Cleaner Production, 272, Article ID: 122804. https://doi.org/10.1016/j.jclepro.2020.122804
[39]
Mikalef, P., Pappas, I. O., Krogstie, J., & Giannakos, M. (2018). Big Data Analytics Capabilities: A Systematic Literature Review and Research Agenda. Information Systems and e-Business Management, 16, 547-578. https://doi.org/10.1007/s10257-017-0362-y
[40]
Monino, J. L. (2021). Data Value, Big Data Analytics, and Decision-Making. Journal of the Knowledge Economy, 12, 256-267. https://doi.org/10.1007/s13132-016-0396-2
[41]
Newton, J. E., Nettle, R., & Pryce, J. E. (2020). Farming Smarter with Big Data: Insights from the Case of Australia’s National Dairy Herd Milk Recording Scheme. Agricultural Systems, 181, Article ID: 102811. https://doi.org/10.1016/j.agsy.2020.102811
[42]
Nicolas, R. (2004). Knowledge Management Impacts on Decision-Making Process. Journal of Knowledge Management, 8, 20-31. https://doi.org/10.1108/13673270410523880
[43]
Nonaka, I. (1988). Toward Middle-up-Down Management: Accelerating Information Creation. MIT Sloan Management Review, 29, 9.
[44]
Nonaka, I. (1994). A Dynamic Theory of Organizational Knowledge Creation. Organization Science, 5, 14-37. https://doi.org/10.1287/orsc.5.1.14
[45]
O’Leary, D. E. (2013). Artificial Intelligence and Big Data. IEEE Intelligent Systems, 28, 96-99. https://doi.org/10.1109/MIS.2013.39
[46]
Shamim, S., Zeng, J., Shariq, S. M., & Khan, Z. (2019). Role of Big Data Management in Enhancing Big Data Decision-Making Capability and Quality among Chinese Firms: A Dynamic Capabilities View. Information & Management, 56, Article ID: 103135. https://doi.org/10.1016/j.im.2018.12.003
[47]
Smith, G. B., Prytherch, D. R., Schmidt, P. E., Featherstone, P. I., & Higgins, B. (2008). A Review, and Performance Evaluation, of Single-Parameter “Track and Trigger” Systems. Resuscitation, 79, 11-21. https://doi.org/10.1016/j.resuscitation.2008.05.004
[48]
Sousa, M. J., Pesqueira, A. M., Lemos, C., Sousa, M., & Rocha, á. (2019). Decision-Making Based on Big Data Analytics for People Management in Healthcare Organizations. Journal of Medical Systems, 43, 290. https://doi.org/10.1007/s10916-019-1419-x
[49]
Tao, D., Yang, P., & Feng, H. (2020). Utilization of Text Mining as a Big Data Analysis Tool for Food Science and Nutrition. Comprehensive Reviews in Food Science and Food Safety, 19, 875-894. https://doi.org/10.1111/1541-4337.12540
[50]
Tommasetti, A., Troisi, O., & Vesci, M. (2017). Measuring Customer Value Co-Creation Behavior. Journal of Service Theory and Practice, 27, 930-950. https://doi.org/10.1108/JSTP-10-2015-0215
[51]
Troisi, O., D’Arco, M., Loia, F., & Maione, G. (2018a). Big Data Management: The Case of Mulino Bianco’s Engagement Platform for Value Co-Creation. International Journal of Engineering Business Management, 10. https://doi.org/10.1177/1847979018767776
[52]
Troisi, O., Grimaldi, M., & Monda, A. (2019). Managing Smart Service Ecosystems through Technology: How ICTs Enable Value Cocreation. Tourism Analysis, 24, 377-393. https://doi.org/10.3727/108354219X15511865533103
[53]
Troisi, O., Grimaldi, M., Loia, F., & Maione, G. (2018b). Big Data and Sentiment Analysis to Highlight Decision Behaviours: A Case Study for Student Population. Behaviour & Information Technology, 37, 1111-1128. https://doi.org/10.1080/0144929X.2018.1502355
[54]
Van de Brug, F. J., Luijckx, N. L., Cnossen, H. J., & Houben, G. F. (2014). Early Signals for Emerging Food Safety Risks: From Past Cases to Future Identification. Food Control, 39, 75-86. https://doi.org/10.1016/j.foodcont.2013.10.038
[55]
Vissia, H., Krasnoproshin, V., & Valvachev, A. (2020). Decision-Making Technology Based on Big Data. Pattern Recognition and Image Analysis, 30, 230-236. https://doi.org/10.1134/S1054661820020169
[56]
Volkova, V. N., Vasiliev, A. Y., Efremov, A. A., & Loginova, A. V. (2017). Information Technologies to Support Decision-Making in the Engineering and Control. In Proceeding of the XX IEEE International Conference on Soft Computing and Measurements (SCM) (pp. 727-730). https://doi.org/10.1109/SCM.2017.7970704
[57]
Wamba-Taguimdje, S. L., Wamba, S. F., Kamdjoug, J. R. K., & Wanko, C. E. T. (2020). Influence of Artificial Intelligence (AI) on Firm Performance: The Business Value of AI-Based Transformation Projects. Business Process Management Journal, 26, 1893-1924. https://doi.org/10.1108/BPMJ-10-2019-0411
[58]
Wang, H., Xu, Z., Fujita, H., & Liu, S. (2016). Towards Felicitous Decision Making: An Overview on Challenges and Trends of Big Data. Information Sciences, 367, 747-765. https://doi.org/10.1016/j.ins.2016.07.007
[59]
Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big Data in Smart Farming—A Review. Agricultural Systems, 153, 69-80. https://doi.org/10.1016/j.agsy.2017.01.023
[60]
Xu, K., Li, Y., Liu, C., Liu, X., Hao, X., Gao, J., & Maropoulos, P. G. (2020). Advanced Data Collection and Analysis in Data-Driven Manufacturing Process. Chinese Journal of Mechanical Engineering, 33, 1-21. https://doi.org/10.1186/s10033-020-00459-x
[61]
Yang, H., Swaminathan, R., Sharma, A., Ketkar, V., & Jason, D. S. (2011). Mining Biomedical Text towards Building a Quantitative Food-Disease-Gene Network. In Learning Structure and Schemas from Documents (pp. 205-225). Springer. https://doi.org/10.1007/978-3-642-22913-8_10
[62]
Yu, T., & Chen, S. H. (2021). Big Data, Scarce Attention and Decision-Making Quality. Computational Economics, 57, 827-856.
[63]
Zhai, Z., Martínez, J. F., Beltran, V., & Martínez, N. L. (2020). Decision Support Systems for Agriculture 4.0: Survey and Challenges. Computers and Electronics in Agriculture, 170, Article ID: 105256. https://doi.org/10.1016/j.compag.2020.105256
[64]
Zhang, J. Z., & Watson IV, G. F. (2020). Marketing Ecosystem: An Outside-In View for Sustainable Advantage. Industrial Marketing Management, 88, 287-304. https://doi.org/10.1016/j.indmarman.2020.04.023