全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

SARS-COV-2 Induce Pulmonary Injury from Basic to Clinical Research

DOI: 10.4236/wjcd.2022.123018, PP. 168-190

Keywords: COVID-19, SARS-CoV-2, Pulmonary Injury, Clinical Manifestation, Treatment Strategies

Full-Text   Cite this paper   Add to My Lib

Abstract:

The SARS-CoV-2 has infected over 194,909,000 cases and over 4,170,000 deaths in the world before the end of July 2021. The virus attacks human alveoli and induces severe lung injury (COVID-19 disease) and spreads rapidly. The mechanisms of COVID-19 disease are unclear. To better understand this disease, This review analyzes the SARS-CoV-2 biological characteristics, insights the effect of alveolar epithelium and its adjacent microvascular endothelium, investigates human host cells immune response and immunothrombosis. Explains clinical manifestations of COVID-19 associated lung injury. It may be helpful for development management strategies for COVID-19 associated pulmonary damage.

References

[1]  Matthay, M.A., Zemans, R.L., Zimmerman, G.A., et al. (2019) Acute Respiratory Distress Syndrome. Nature Reviews Disease Primers, 5, 18.
https://doi.org/10.1038/s41572-019-0069-0
[2]  Hassan, S.A., Sheikh, F.N., Jamal, S., et al. (2020) Coronavirus (COVID-19): A Review of Clinical Features, Diagnosis, and Treatment. Cureus, 12, e7355.
https://doi.org/10.7759/cureus.7355
[3]  Andersen, K.G., Rambaut, A., Lipkin, W.I., et al. (2020) The Proximal Origin of SARS-CoV-2. Nature Medicine, 26, 450-452.
https://doi.org/10.1038/s41591-020-0820-9
[4]  Zhou, P., Yang, X.L., Wang, X.G., et al. (2020) A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature, 579, 270-273.
https://doi.org/10.1038/s41586-020-2012-7
[5]  Rothan, H.A. and Byrareddy, S.N. (2020) The Epidemiology and Pathogenesis of Coronavirus Disease (COVID-19) Outbreak. Journal of Autoimmunity, 109, Article ID: 102433.
https://doi.org/10.1016/j.jaut.2020.102433
[6]  Lauer, S.A., Grantz, K.H., Bi, Q., et al. (2020) The Incubation Period of Coronavirus Disease 2019 (COVID-19) from Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine, 172, 577-582.
https://doi.org/10.7326/M20-0504
[7]  Jin, J.-M., Bai, P., He, W., et al. (2020) Gender Differences in Patients with COVID- 19: Focus on Severity and Mortality. Frontiers in Public Health, 8, Article No. 152.
https://doi.org/10.3389/fpubh.2020.00152
[8]  Huang, J., Cheng, A., Kumar, R., et al. (2020) Hypoalbuminemia Predicts the Outcome of COVID-19 Independent of Age and Co-Morbidity. Journal of Medical Virology, 92, 2152-2158.
https://doi.org/10.1002/jmv.26003
[9]  Hamming, I., Timens, W., Bulthuis, M.L., et al. (2004) Tissue Distribution of ACE2 Protein, the Functional Receptor for SARS Coronavirus. A First Step in Understanding SARS Pathogenesis. The Journal of Pathology, 203, 631-637.
https://doi.org/10.1002/path.1570
[10]  Zaim, S., Chong, J.H., Sankaranarayanan, V., et al. (2020) COVID-19 and Multiorgan Response. Current Problems in Cardiology, 45, Article ID: 100618.
https://doi.org/10.1016/j.cpcardiol.2020.100618
[11]  Patel, A.B. and Verma, A. (2020) COVID-19 Angiotensin-Converting Enzyme Inhibitors Angiotensin Receptor Blockers: What Is the Evidence? JAMA, 323, 1769- 1770.
https://doi.org/10.1001/jama.2020.4812
[12]  Sun, X., Wang, T., Cai, D., Hu, Z., Chen, J., Liao, H., Zhi, L., Wei, H., Zhang, Z., Qiu, Y., Wang, J., et al. (2020) Cytokine Storm Intervention in the Early Stages of COVID-19 Pneumonia. Cytokine & Growth Factor Reviews, 53, 38-42.
https://doi.org/10.1016/j.cytogfr.2020.04.002
[13]  Tisoncik, J.R., Korth, M.J., Simmons, C.P., Farrar, J., Martin, T.R. and Katze, M.G. (2012) Into the Eye of the Cytokine Storm. Microbiology and Molecular Biology Reviews, 76, 16-32.
https://doi.org/10.1128/MMBR.05015-11
[14]  Tang, N., Li, D., Wang, X. and Sun, Z. (2020) Abnormal Coagulation Parameters Are Associated with Poor Prognosis in Patients with Novel Coronavirus Pneumonia. Journal of Thrombosis and Haemostasis, 18, 844-847.
https://doi.org/10.1111/jth.14768
[15]  Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., et al. (2020) Epidemiological and Clinical Characteristics of 99 Cases of 2019 Novel Coronavirus Pneumonia in Wuhan, China: A Descriptive Study. The Lancet, 395, 507-513.
https://doi.org/10.1016/S0140-6736(20)30211-7
[16]  Han, H., Yang, L., Liu, R., Liu, F., Wu, K.L., Li, J., Liu, X.H. and Zhu, C.L. (2020) Prominent Changes in Blood Coagulation of Patients with SARS-CoV-2 Infection. Clinical Chemistry and Laboratory Medicine, 58, 1116-1120.
https://doi.org/10.1515/cclm-2020-0188
[17]  Jakovac, H. (2020) COVID-19: Is the ACE2 Just a Foe? The American Journal of Physiology-Lung Cellular and Molecular Physiology, 318, L1025-L1026.
https://doi.org/10.1152/ajplung.00119.2020
[18]  Campana, P., Parisi, V., Leosco, D., Bencivenga, D., Della Ragione, F. and Borriello, A. (2020) Dendritic Cells and SARS-CoV-2 Infection: Still an Unclarified Connection. Cells, 9, 2046.
https://doi.org/10.3390/cells9092046
[19]  Chung, M.K., Zidar, D.A., Bristow, M.R., Cameron, S.J., Chan, T., Harding III, C.V., Kwon, D.H., Singh, T., Tilton, J.C., Tsai, E.J., Tucker, N.R., Barnard, J. and Loscalzo, J. (2021) COVID-19 and Cardiovascular Disease from Bench to Bedside. Circulation Research, 128, 1214-1236.
https://doi.org/10.1161/CIRCRESAHA.121.317997
[20]  Majumder, J. and Minko, T. (2021) Recent Developments on Therapeutic and Diagnostic Approaches for COVID-19. The AAPS Journal, 23, 14.
https://doi.org/10.1208/s12248-020-00532-2
[21]  Lei, C., Qian, K., Li, T., et al. (2020) Neutralization of SARS-CoV-2 Spike Pseudotyped Virus by Recombinant ACE2-Ig. Nature Communications, 11, Article No. 2070.
https://doi.org/10.1038/s41467-020-16048-4
[22]  Boopathi, S., Poma, A.B. and Kolandaivel, P. (2020) Novel 2019 Coronavirus Structure, Mechanism of Action, Antiviral Drug Promises and Rule out against Its Treatment. Journal of Biomolecular Structure and Dynamics, 38, 1-10.
https://doi.org/10.1080/07391102.2020.1758788
[23]  Zhang, H., Penninger, J.M., Li, Y., et al. (2020) Angiotensin-Converting Enzyme 2 (ACE2) as a SARS-CoV-2 Receptor: Molecular Mechanisms and Potential Therapeutic Target. Intensive Care Medicine, 46, 586-590.
https://doi.org/10.1007/s00134-020-05985-9
[24]  Lai, C.C., Shih, T.P., Ko, W.C., Tang, H.J. and Hsueh, P.R. (2020) Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Coronavirus Disease-2019 (COVID-19): The Epidemic and the Challenges. International Journal of Antimicrobial Agents, 55, Article ID: 105924.
https://doi.org/10.1016/j.ijantimicag.2020.105924
[25]  Tay, M.Z., Poh, C.M., Renia, L., MacAry, P.A. and Ng, L.F.P. (2020) The Trinity of COVID-19: Immunity, Inflammation and Intervention. Nature Reviews Immunology, 20, 363-374.
https://doi.org/10.1038/s41577-020-0311-8
[26]  Bhardwaj, A., Sapra, L., Saini, C., et al. (2021) COVID-19: Immunology, Immunopathogenesis and Potential Therapies. International Reviews of Immunology, 41, 171-206.
https://doi.org/10.1080/08830185.2021.1883600
[27]  Li, G., Fan, Y., Lai, Y., Han, T., Li, Z., Zhou, P., Pan, P., Wang, W., Hu, D., Liu, X., Zhang, Q., et al. (2020) Coronavirus Infections and Immune Responses. Journal of Medical Virology, 92, 424-432.
https://doi.org/10.1002/jmv.25685
[28]  Chowdhury, M.A., Hossain, N., Kashem, M.A., Shahid, M.A. and Alam, A. (2020) Immune Response in COVID-19: A Review. Journal of Infection and Public Health, 13, 1619-1629.
https://doi.org/10.1016/j.jiph.2020.07.001
[29]  Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiergens, T.S., Herrler, G., Wu, N.H., Nitsche, A., Muller, M.A., et al. (2020) SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181, 271-280.
https://doi.org/10.1016/j.cell.2020.02.052
[30]  Liu, Y., Yang, Y., Zhang, C., Huang, F., Wang, F., Yuan, J., Wang, Z., Li, J., Li, J., Feng, C., Zhang, Z., et al. (2020) Clinical and Biochemical Indexes from 2019-nCoV Infected Patients Linked to Viral Loads and Lung Injury. Science China Life Sciences, 63, 364-374.
https://doi.org/10.1007/s11427-020-1643-8
[31]  Zhang, X., Yang, J., Yu, X., Cheng, S., Gan, H. and Xia, Y. (2017) Angiotensin II- Induced Early and Late Inflammatory Responses through NOXs and MAPK Pathways. Inflammation, 40, 154-165.
https://doi.org/10.1007/s10753-016-0464-6
[32]  Li, X., Geng, M., Peng, Y., Meng, L. and Lu, S. (2020) Molecular Immunepathogenesis and Diagnosis of COVID-19. Journal of Pharmaceutical Analysis, 10, 102-108.
https://doi.org/10.1016/j.jpha.2020.03.001
[33]  Ying, H.J., Qing, Y.Z., Zhi, Y.P., et al. (2020) Chemoprophylaxis, Diagnosis, Treatments, and Discharge Management of COVID-19: An Evidence-Based Clinical Practice. Military Medical Research, 7, 41.
[34]  Nicosia, R.F., Ligresti, G., Caporarello, N., Akilesh, S. and Ribatti, D. (2021) COVID- 19 Vasculopathy: Mounting Evidence for an Indirect Mechanism of Endothelial Injury. The American Journal of Pathology, 191, 1374-1384.
https://doi.org/10.1016/j.ajpath.2021.05.007
[35]  Magro, C., Mulvey, J.J., Berlin, D., et al. (2020) Complement Associated Microvascular Injury and Thrombosis in the Pathogenesis of Severe COVID-19 Infection: A Report of Five Cases. Translational Research, 220, 1-13.
https://doi.org/10.1016/j.trsl.2020.04.007
[36]  Varga, Z., Flammer, A.J., Steiger, P., et al. (2020) Endothelial Cell Infection and Endotheliitis in COVID-19. The Lancet, 395, 1417-1418.
https://doi.org/10.1016/S0140-6736(20)30937-5
[37]  Miesbach, W. (2020) Pathological Role of Angiotensin II in Severe COVID-19. TH Open, 4, e138-e144.
https://doi.org/10.1055/s-0040-1713678
[38]  Lippi, G. and Favaloro, E.J. (2020) D-Dimer Is Associated with Severity of Coronavirus Disease 2019: A Pooled Analysis. Thrombosis and Haemostasis, 120, 876-878.
https://doi.org/10.1055/s-0040-1709650
[39]  Ackermann, M., Verleden, S., Kuehnel, M., Haverich, A., Welte, T., Laenger, F., Vanstapel, A., Werlein, C, Stark, H., Tzankov, A., et al. (2020) Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. The New England Journal of Medicine, 383, 120-128.
https://doi.org/10.1056/NEJMoa2015432
[40]  Varga, Z., Flammer, A.J., Steiger, P., Haberecker, M. andermatt, R., Zinkernagel, A.S., Mehra, M.R., Schuepbach, R.A., Ruschitzka, F. and Moch, H. (2020) Endothelial Cell Infection and Endotheliitis in COVID-19. The Lancet, 395, 1417-1418.
https://doi.org/10.1016/S0140-6736(20)30937-5
[41]  Goshua, G., Pine, A.B., Meizlish, M.L., Chang, C.-H., Zhang, H., Bahel, P., Baluha, A., Bar, N., Bona, R.D., Burns, A.J., et al. (2020) Endotheliopathy in COVID-19- Associated Coagulopathy: Evidence from a Single-Centre, Cross-Sectional Study. The Lancet Haematology, 7, e575-e582.
https://doi.org/10.1016/S2352-3026(20)30216-7
[42]  Huisman, A., Beun, R., Sikma, M., Westerink, J. and Kusadasi, N. (2020) Involvement of ADAMTS13 and von Willebrand Factor in Thromboembolic Events in Patients Infected with SARS-CoV-2. International Journal of Laboratory Hematology, 42, e211-e212.
https://doi.org/10.1111/ijlh.13244
[43]  Panigada, M., Bottino, N., Tagliabue, P., Grasselli, G., Novembrino, C., Chantarangkul, V., Pesenti, A., Peyvandi, F. and Tripodi, A. (2020) Hypercoagulability of COVID-19 Patients in Intensive Care Unit: A Report of Thromboelastography Findings and Other Parameters of Hemostasis. Journal of Thrombosis and Haemostasis, 18, 1738-1742.
https://doi.org/10.1111/jth.14850
[44]  Karmouty-Quintana, H., Thandavarayan, J.A., Keller, S.P., et al. (2020) Emerging Mechanisms of Pulmonary Vasoconstriction n SARS-CoV-2-Induced Acute Respiratory Distress Syndrome (ARDS) and Potential Therapeutic Targets. International Journal of Molecular Sciences, 21, 8081.
https://doi.org/10.3390/ijms21218081
[45]  llnoch, L., Beythien, G., Leitzen, E., et al. (2021) Vascular Inflammation Is Associated with Loss of Aquaporin 1 Expression on Endothelial Cells and Increased Fluid Leakage in SARS-CoV-2 Infected Golden Syrian Hamsters. Viruses, 13, 639.
https://doi.org/10.3390/v13040639
[46]  Perico, L., Benigni, A., Casiraghi, F., et al. (2021) Immunity, Endothelial Injury and Complement-Induced Coagulopathy in COVID-19. Nature Reviews Nephrology, 17, 46-64.
https://doi.org/10.1038/s41581-020-00357-4
[47]  Mastaglio, S., et al. (2020) The First Case of COVID-19 Treated with the Complement C3 Inhibitor AMY-101. Clinical Immunology, 215, Article ID: 108450.
https://doi.org/10.1016/j.clim.2020.108450
[48]  Keshari, R.S., et al. (2015) Complement C5 Inhibition Blocks the Cytokine Storm and Consumptive Coagulopathy by Decreasing Lipopolysaccharide (LPS) Release in E. coli Sepsis. Blood, 126, 765-765.
https://doi.org/10.1182/blood.V126.23.765.765
[49]  Bikdeli, B., Madhavan, M.V., Jimenez, D., et al. (2020) COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 75, 2950-2973.
https://doi.org/10.1016/j.jacc.2020.04.031
[50]  Emert, R., Shah, P. and Zampella, J.G. (2020) COVID-19 and Hypercoagulability in the Outpatient Setting. Thrombosis Research, 192, 122-123.
https://doi.org/10.1016/j.thromres.2020.05.031
[51]  Naymagon, L., Zubizarreta, N., Feld, J., et al. (2020) Admission D-Dimer Levels, D-Dimer Trends, and Outcomes in COVID-19. Thrombosis Research, 196, 99-105.
https://doi.org/10.1016/j.thromres.2020.08.032
[52]  Guan, W.J., Ni, Z.Y., Hu, Y., et al. (2020) Clinical Characteristics of Coronavirus Disease 2019 in China. The New England Journal of Medicine, 382, 1708-1720.
https://doi.org/10.1056/NEJMoa2002032
[53]  Ackermann, M., Verleden, S.E., Kuehnel, M., et al. (2020) Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. The New England Journal of Medicine, 383, 120-128.
https://doi.org/10.1056/NEJMoa2015432
[54]  Lax, S.F., Skok, K., Zechner, P., et al. (2020) Pulmonary Arterial Thrombosis in COVID-19 with Fatal Outcome: Results from a Prospective, Single-Center, Clinicopathologic Case Series. Annals of Internal Medicine, 173, 350-361.
https://doi.org/10.7326/M20-2566
[55]  Mohanty, S.K., Satapathy, A., Naidu, M.M., et al. (2020) Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and Coronavirus Disease 19 (COVID- 19)—Anatomic Pathology Perspective on Current Knowledge. Diagnostic Pathology, 15, 103.
https://doi.org/10.1186/s13000-020-01017-8
[56]  Blanco-Melo, D., Nilsson-Payant, B.E., Liu, W.C., Uhl, S., Hoagland, D., Moller, R., Jordan, T.X., Oishi, K., Panis, M., Sachs, D., Wang, T.T., et al. (2020) Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell, 181, 1036- 1045.e9.
https://doi.org/10.1016/j.cell.2020.04.026
[57]  Scully, E.P., Haverfield, J., Ursin, R.L., Tannenbaum, C. and Klein, S.L. (2020) Considering How Biological Sex Impacts Immune Responses and COVID-19 Outcomes. Nature Reviews Immunology, 20, 442-447.
https://doi.org/10.1038/s41577-020-0348-8
[58]  Marquez, E.J., Chung, C.H., Marches, R., Rossi, R.J., Nehar-Belaid, D., Eroglu, A., Mellert, D.J., Kuchel, G.A., Banchereau, J. and Ucar, D. (2020) Sexual-Dimorphism in Human Immune System Aging. Nature Communications, 11, Article No. 751.
https://doi.org/10.1038/s41467-020-14396-9
[59]  Ye, C.-H., Hsu, W.-L., Peng, G.-R., et al. (2021) Role of the Immune Microenvironment in SARS-CoV-2 Infection. Cell Transplantation, 30, 1-15.
https://doi.org/10.1177/09636897211010632
[60]  Gadi, N., Wu, S.C., Spihlman, A.P. and Moulton, V.R. (2020) What’s Sex Got to Do with COVID-19? Gender-Based Differences in the Host Immune Response to Coronaviruses. Frontiers in Immunology, 11, Article No. 2147.
https://doi.org/10.3389/fimmu.2020.02147
[61]  Shi, Y., Wang, Y., Shao, C., Huang, J., Gan, J., Huang, X., Bucci, E., Piacentini, M., Ippolito, G. and Melino, G. (2020) COVID-19 Infection: The Perspectives on Immune Responses. Cell Death & Differentiation, 27, 1451-1454.
https://doi.org/10.1038/s41418-020-0530-3
[62]  Zu, Z.Y., Jiang, M.D., et al. (2020) Coronavirus Disease 2019 (COVID-19): A Perspective from China. Radiology, 296, No. 2.
https://doi.org/10.1148/radiol.2020200490
[63]  O’Connell, P. and Aldhamen, Y.A. (2020) Systemic Innate and Adaptive Immune Responses to SARS-CoV-2 as It Relates to Other Coronaviruses. Human Vaccines & Immunotherapeutics, 16, 1-12.
https://doi.org/10.1080/21645515.2020.1802974
[64]  Channappanavar, R. and Perlman, S. (2017) Pathogenic Human Coronavirus Infections: Causes and Consequences of Cytokine Storm and Immunopathology. Seminars in Immunopathology, 39, 529-539.
https://doi.org/10.1007/s00281-017-0629-x
[65]  Merad, M. and Martin, J.C. (2020) Pathological Inflammation in Patients with COVID-19: A Key Role for Monocytes and Macrophages. Nature Reviews Immunology, 20, 355-362.
https://doi.org/10.1038/s41577-020-0331-4
[66]  Liao, M., Liu, Y., Yuan, J., Wen, Y., Xu, G., Zhao, J., Cheng, L., Li, J., Wang, X., Wang, F., Liu, L., et al. (2020) Single-Cell Landscape of Bronchoalveolar Immune Cells in Patients with COVID-19. Nature Medicine, 26, 842-844.
https://doi.org/10.1038/s41591-020-0901-9
[67]  Wen, W., Su, W., Tang, H., Le, W., Zhang, X., Zheng, Y., Liu, X., Xie, L., Li, J., Ye, J., Dong, L., et al. (2020) Immune Cell Profiling of COVID-19 Patients in the Recovery Stage by Single-Cell Sequencing. Cell Discovery, 6, 31.
https://doi.org/10.1038/s41421-020-0168-9
[68]  Booz, G.W., Altara, R., Eid, A.H., Wehbe, Z., Fares, S., Zaraket, H., Habeichi, N.J. and Zouein, F.A. (2020) Macrophage Responses Associated with COVID-19: A Pharmacological Perspective. European Journal of Pharmacology, 887, Article ID: 173547.
https://doi.org/10.1016/j.ejphar.2020.173547
[69]  Wan, S., Yi, Q., Fan, S., Lv, J., Zhang, X., Guo, L., Lang, C., Xiao, Q., Xiao, K., Yi, Z., Qiang, M., et al. (2020) Relationships among Lymphocyte Subsets, Cytokines, and the Pulmonary Inflammation Index in Coronavirus (COVID-19) Infected Patients. British Journal of Haematology, 189, 428-437.
https://doi.org/10.1111/bjh.16659
[70]  Zhang, D., Guo, R., Lei, L., Liu, H., Wang, Y., Wang, Y., Qian, H., Dai, T., Zhang, T., Lai, Y., Wang, J., et al. (2020) COVID-19 Infection Induces Readily Detectable Morphologic and Inflammation-Related Phenotypic Changes in Peripheral Blood Monocytes. Journal of Leukocyte Biology, 109, 13-22.
https://doi.org/10.1002/JLB.4HI0720-470R
[71]  Xiong, Y., Liu, Y., Cao, L., Wang, D., Guo, M., Jiang, A., Guo, D., Hu, W., Yang, J., Tang, Z., Wu, H., et al. (2020) Transcriptomic Characteristics of Bronchoalveolar Lavage Fluid and Peripheral Blood Mononuclear Cells in COVID-19 Patients. Emerging Microbes & Infections, 9, 761-770.
https://doi.org/10.1080/22221751.2020.1747363
[72]  Paces, J., Strizova, Z., Smrz, D. and Cerny, J. (2020) COVID-19 and the Immune System. Physiological Research, 69, 379-388.
https://doi.org/10.33549/physiolres.934492
[73]  Liu, J., Li, S., Liu, J., Liang, B., Wang, X., Wang, H., Li, W., Tong, Q., Yi, J., Zhao, L., Xiong, L., et al. (2020) Longitudinal Characteristics of Lymphocyte Responses and Cytokine Profiles in the Peripheral Blood of SARS-CoV-2 Infected Patients. EBioMedicine, 55, Article ID: 102763.
https://doi.org/10.1016/j.ebiom.2020.102763
[74]  Qin, C., Zhou, L., Hu, Z., Zhang, S., Yang, S., Tao, Y., Xie, C., Ma, K., Shang, K., Wang, W. and Tian, D.S. (2020) Dysregulation of Immune Response in Patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clinical Infectious Diseases, 71, 762-768.
https://doi.org/10.1093/cid/ciaa248
[75]  Birra, D., Benucci, M., Landolfi, L., Merchionda, A., Loi, G., Amato, P., Licata, G., Quartuccio, L., Triggiani, M. and Moscato, P. (2020) COVID-19: A Clue from Innate Immunity. Immunologic Research, 68, 161-168.
https://doi.org/10.1007/s12026-020-09137-5
[76]  Barnes, B.J., Adrover, J.M., Baxter-Stoltzfus, A., Borczuk, A., Cools-Lartigue, J., Crawford, J.M., Dassler-Plenker, J., Guerci, P., Huynh, C., Knight, J.S., Loda, M., et al. (2020) Targeting Potential Drivers of COVID-19: Neutrophil Extracellular Traps. Journal of Experimental Medicine, 217, e20200652.
https://doi.org/10.1084/jem.20200652
[77]  Vardhana, S.A. and Wolchok, J.D. (2020) The Many Faces of the Anti-COVID Immune Response. Journal of Experimental Medicine, 217, e20200678.
https://doi.org/10.1084/jem.20200678
[78]  Soy, M., Keser, G., Atagunduz, P., Tabak, F., Atagunduz, I. and Kayhan, S. (2020) Cytokine Storm in COVID-19: Pathogenesis and Overview of Anti-Inflammatory Agents Used in Treatment. Clinical Rheumatology, 39, 2085-2094.
https://doi.org/10.1007/s10067-020-05190-5
[79]  Didangelos, A. (2020) COVID-19 Hyperinflammation: What about Neutrophils? mSphere, 5, e00367-e00420.
https://doi.org/10.1128/mSphere.00367-20
[80]  Yang, D., Chu, H., Hou, Y., Chai, Y., Shuai, H., Lee, A.C., Zhang, X., Wang, Y., Hu, B., Huang, X., Yuen, T.T., et al. (2020) Attenuated Interferon and Proinflammatory Response in Sars-Cov-2-Infected Human Dendritic Cells Is Associated with Viral Antagonism of STAT1 Phosphorylation. The Journal of Infectious Diseases, 222, 734-745.
https://doi.org/10.1093/infdis/jiaa356
[81]  Zhou, R., To, K.K., Wong, Y.C., Liu, L., Zhou, B., Li, X., Huang, H., Mo, Y., Luk, T.Y., Lau, T.T., Yeung, P., et al. (2020) Acute SARS-CoV-2 Infection Impairs Dendritic Cell and T Cell Responses. Immunity, 53, 864-877.e5.
https://doi.org/10.1016/j.immuni.2020.07.026
[82]  Zheng, M., Gao, Y., Wang, G., Song, G., Liu, S., Sun, D., Xu, Y. and Tian, Z. (2020) Functional Exhaustion of Antiviral Lymphocytes in COVID-19 Patients. Cellular & Molecular Immunology, 17, 533-535.
https://doi.org/10.1038/s41423-020-0402-2
[83]  Gomez-Rial, J., Rivero-Calle, I., Salas, A. and Martinon-Torres, F. (2020) Role of Monocytes/Macrophages in Covid-19 Pathogenesis: Implications for Therapy. Infection and Drug Resistance, 13, 2485-2493.
https://doi.org/10.2147/IDR.S258639
[84]  Lang, P.A., Recher, M., Honke, N., Scheu, S., Borkens, S., Gailus, N., Krings, C., Meryk, A., Kulawik, A., Cervantes-Barragan, L., Van Rooijen, N., et al. (2010) Tissue Macrophages Suppress Viral Replication and Prevent Severe Immunopathology in an Interferon-Independent Manner in Mice. Hepatology, 52, 25-32.
https://doi.org/10.1002/hep.23640
[85]  Martinez, F.O., Combes, T.W., Orsenigo, F. and Gordon, S. (2020) Monocyte Activation in Systemic Covid-19 Infection: Assay and Rationale. EBioMedicine, 59, Article ID: 102964.
https://doi.org/10.1016/j.ebiom.2020.102964
[86]  Garcia, L.F. (2020) Immune Response, Inflammation, and the Clinical Spectrum of COVID-19. Frontiers in Immunology, 11, Article No. 1441.
https://doi.org/10.3389/fimmu.2020.01441
[87]  Chu, H., Chan, J.F., Wang, Y., Yuen, T.T., Chai, Y., Hou, Y., Shuai, H., Yang, D., Hu, B., Huang, X., Zhang, X., et al. (2020) Comparative Replication and Immune Activation Profiles of SARS-CoV-2 and SARS-CoV in Human Lungs: An ex Vivo Study with Implications for the Pathogenesis of COVID-19. Clinical Infectious Diseases, 71, 1400-1409.
https://doi.org/10.1093/cid/ciaa410
[88]  Kiener, M., Roldan, N., Machahua, C., et al. (2021) Human-Based Advanced in Vitro Approaches to Investigate Lung Fibrosis and Pulmonary Effects of COVID-19. Frontiers of Medicine, 8, 644-678.
https://doi.org/10.3389/fmed.2021.644678
[89]  Tang, Y., Liu, J., Zhang, D., Xu, Z., Ji, J. and Wen, C. (2020) Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Frontiers in Immunology, 11, Article No. 1708.
https://doi.org/10.3389/fimmu.2020.01708
[90]  Park, M.D. (2020) Macrophages: A Trojan Horse in COVID-19? Nature Reviews Immunology, 20, 351.
https://doi.org/10.1038/s41577-020-0317-2
[91]  Jafarzadeh, A., Chauhan, P., Saha, B., Jafarzadeh, S. and Nemati, M. (2020) Contribution of Monocytes and Macrophages to the Local Tissue Inflammation and Cytokine Storm in COVID-19: Lessons from SARS and MERS, and Potential Therapeutic Interventions. Life Sciences, 257, Article ID: 118102.
https://doi.org/10.1016/j.lfs.2020.118102
[92]  Jamilloux, Y., Henry, T., Belot, A., Viel, S., Fauter, M., El Jammal, T., Walzer, T., Francois, B. and Seve, P. (2020) Should We Stimulate or Suppress Immune Responses in COVID-19? Cytokine and Anti-Cytokine Interventions. Autoimmunity Reviews, 19, Article ID: 102567.
https://doi.org/10.1016/j.autrev.2020.102567
[93]  Pelaia, C., Tinello, C., Vatrella, A., De Sarro, G. and Pelaia, G. (2020) Lung under Attack by COVID-19-Induced Cytokine Storm: Pathogenic Mechanisms and Therapeutic Implications. Therapeutic Advances in Respiratory Disease, 14, 1-9.
https://doi.org/10.1177/1753466620933508
[94]  Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., et al. (2020) Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. The Lancet, 395, 497-506.
https://doi.org/10.1016/S0140-6736(20)30183-5
[95]  Melenotte, C., Silvin, A., Goubet, A.-G., et al. (2020) Immune Responses during COVID-19 Infection. Oncoimmunology, 9, 23.
https://doi.org/10.1080/2162402X.2020.1807836
[96]  Mazzoni, A., Salvati, L., Maggi, L., Capone, M., Vanni, A., Spinicci, M., Mencarini, J., Caporale, R., Peruzzi, B., Antonelli, A., Trotta, M., et al. (2020) Impaired Immune Cell Cytotoxicity in Severe COVID-19 Is IL-6 Dependent. Journal of Clinical Investigation, 130, 4694-4703.
https://doi.org/10.1172/JCI138554
[97]  Jiang, Y., Wei, X., Guan, J., Qin, S., Wang, Z., Lu, H., Qian, J., Wu, L., Chen, Y., Chen, Y. and Lin, X. (2020) COVID-19 Pneumonia: CD8(t) T and NK Cells Are Decreased in Number But Compensatory Increased in Cytotoxic Potential. Clinical Immunology, 218, Article ID: 108516.
https://doi.org/10.1016/j.clim.2020.108516
[98]  Wilk, A.J., Rustagi, A., Zhao, N.Q., Roque, J., Martinez-Colon, G.J., McKechnie, J.L., Ivison, G.T., Ranganath, T., Vergara, R., Hollis, T., Simpson, L.J., et al. (2020) A Single-Cell Atlas of the Peripheral Immune Response in Patients with Severe COVID-19. Nature Medicine, 26, 1070-1076.
https://doi.org/10.1038/s41591-020-0944-y
[99]  Giamarellos-Bourboulis, E.J., Netea, M.G., Rovina, N., Akinosoglou, K., Antoniadou, A., Antonakos, N., Damoraki, G., Gkavogianni, T., Adami, M.E., Katsaounou, P., Ntaganou, M., et al. (2020) Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host & Microbe, 27, 992-1000.e3.
https://doi.org/10.1016/j.chom.2020.04.009
[100]  Demaria, O., Carvelli, J., Batista, L., Thibult, M.L., Morel, A. andre, P., Morel, Y., Vely, F. and Vivier, E. (2020) Identification of Druggable Inhibitory Immune Checkpoints on Natural Killer Cells in COVID-19. Cellular & Molecular Immunology, 17, 995-997.
https://doi.org/10.1038/s41423-020-0493-9
[101]  Chua, R.L., Lukassen, S., Trump, S., Hennig, B.P., Wendisch, D., Pott, F., Debnath, O., Thurmann, L., Kurth, F., Volker, M.T., Kazmierski, J., et al. (2020) COVID-19 Severity Correlates with Airway Epithelium-Immune Cell Interactions Identified by Single-Cell Analysis. Nature Biotechnology, 38, 970-979.
https://doi.org/10.1038/s41587-020-0602-4
[102]  Anfossi, N. andre, P., Guia, S., Falk, C.S., Roetynck, S., Stewart, C.A., Breso, V., Frassati, C., Reviron, D., Middleton, D., Romagne, F., et al. (2006) Human NK Cell Education by Inhibitory Receptors for MHC Class I. Immunity, 25, 331-342.
https://doi.org/10.1016/j.immuni.2006.06.013
[103]  Patel, J.J., Martindale, R.G. and McClave, S.A. (2020) Relevant Nutrition Therapy in COVID-19 and the Constraints on Its Delivery by a Unique Disease Process. Nutrition in Clinical Practice, 1, 8.
https://doi.org/10.1002/ncp.10566
[104]  Habashi, N.M., Camporota, L., Gatto, L.A., et al. (2021) Functional Pathophysiology of SARS-CoV-2-Induced Acute Lung Injury and Clinical Implications. Journal of Applied Physiology, 130, 877-891.
https://doi.org/10.1152/japplphysiol.00742.2020
[105]  Omolo, C.A., Soni, N., Fasiku, V.O., et al. (2020) Update on Therapeutic Approaches and Emerging Therapies for SARS-CoV-2 Virus. European Journal of Pharmacology, 883, Article ID: 173348.
https://doi.org/10.1016/j.ejphar.2020.173348
[106]  Esmaeilzadeh, A. and Elahi, R. (2020) Immunobiology and Immunotherapy of COVID-19: A Clinically Updated Overview. Journal of Cellular Physiology, 1, 25.
https://doi.org/10.1002/jcp.30076
[107]  Liu, X., et al. (2020) COVID-19: Progress in Diagnostics, Therapy and Vaccination. Theranostics, 10, 7821-7835.
https://doi.org/10.7150/thno.47987
[108]  Ramezankhani, R., Solhi, R., Memarnejadian, A., et al. (2020) Therapeutic Modalities and Novel Approaches in Regenerative Medicine for COVID-19. International Journal of Antimicrobial Agents, 56, Article ID: 106208.
https://doi.org/10.1016/j.ijantimicag.2020.106208
[109]  Zuo, Y., Yalavarthi, S., Shi, H., Gockman, K., Zuo, M., Madison, J.A., Blair, C., Weber, A., Barnes, B.J., Egeblad, M., Woods, R.J., et al. (2020) Neutrophil Extracellular Traps in COVID-19. JCI Insight, 5, e138999.
https://doi.org/10.1172/jci.insight.138999
[110]  Zhao, Y., Nie, H.X., Hu, K., Wu, X.J., Zhang, Y.T., Wang, M.M., Wang, T., Zheng, Z.S., Li, X.C. and Zeng, S.L. (2020) Abnormal Immunity of Non-Survivors with COVID-19: Predictors for Mortality. Infectious Diseases of Poverty, 9, 108.
https://doi.org/10.1186/s40249-020-00723-1
[111]  Camp, J.V. and Jonsson, C.B. (2017) A Role for Neutrophils in Viral Respiratory Disease. Frontiers in Immunology, 8, Article No. 550.
https://doi.org/10.3389/fimmu.2017.00550

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133