|
无限维系统正迹类算子上保持Bregman f-散度映射
|
Abstract:
设H为无限维的可分Hilbert空间,令PTr(H)表示H上所有的正定的迹类算子组成的集合。该文主要研究了无限维的可分Hilbert空间H上正迹类算子的保持问题,给出了PTr(H)上保持满足某些条件的可微凸函数对应的Bregman f-散度和Umegaki相对熵(函数x?xlogx对应的Bregman散度)的双射的完全刻画。
Let H be an infinite separable Hilbert space and PTr(H) represent the set of all positive trace operators on H. In this paper, we characterize the bijective maps on PTr(H) preserving Bregman f-divergence where f is a differentiable convex function satisfying certain conditions and Umegaki relative entropy (Bregman divergence corresponding to function x?xlogx); then we show that these maps are unitary transformations or anti-unitary transformations.
[1] | Molnár, L. (2008) Maps on States Preserving the Relative Entropy. Journal of Mathematical Physics, 49, Article ID: 032114. https://doi.org/10.1063/1.2898693 |
[2] | Molnár, L. (2010) Maps on States Preserving the Relative Entropy. II. Linear Algebra and Its Applications, 432, 3343-3350. https://doi.org/10.1016/j.laa.2010.01.025 |
[3] | Molnár, L., Pitrik, J. and Virosztek, D. (2016) Maps on Positive Definite Matrices Preserving Bregman and Jensen Divergences. Linear Algebra and its Applications, 495, 174-189. https://doi.org/10.1016/j.laa.2016.01.010 |
[4] | Virosztek, D. (2016) Maps on Quantum States Preserving Bregman and Jensen Divergences. Letters in Mathematical Physics, 106, 1217-1234. https://doi.org/10.1007/s11005-016-0868-0 |
[5] | Molnár, L. and Nagy, G. (2012) Isometries and Relative Entropy Preserving Maps on Density Operators. Letters in Mathematical Physics, 60, 93-108. https://doi.org/10.1080/03081087.2011.570267 |
[6] | Molnár, L., Nagy, G. and Szokol, P. (2013) Maps on Density Operators Preserving Quantum F-Divergences. Quantum Information Processing, 12, 2309-2323. https://doi.org/10.1007/s11128-013-0528-6 |
[7] | Virosztek, D. (2016) Quantum F-Divergence Preserving Maps on Positive Semidefinite Operators Acting on Finite Dimensional Hilbert Spaces. Linear Algebra and Its Applications, 501, 242-253. https://doi.org/10.1016/j.laa.2016.03.031 |
[8] | Hisaharu, U. (1962) Conditional Expectation in an Operator Algebra, IV. Kodai Mathematical Journal, 14, 59-85.
https://doi.org/10.2996/kmj/1138844604 |
[9] | Pitrik, J. and Virosztek, D. (2015) On the Joint Convexity of the Bregman Divergence of Matrices. Letters in Mathematical Physics, 105, 675?69. https://doi.org/10.1007/s11005-015-0757-y |
[10] | Moln Sr, L. (2011) Order Automorphisms on Positive Definite Operators and a Few Applications. Linear Algebra and Its Applications, 434, 2158-2169. https://doi.org/10.1016/j.laa.2010.12.007 |
[11] | Carlen, E. (2010) Trace Inequalities and Quantum Entropy: An Introductory Course. Entropy and the Quantum, 529, 43-140. https://doi.org/10.1090/conm/529/10428 |