%0 Journal Article %T 无限维系统正迹类算子上保持Bregman f-散度映射
Maps Preserving Bregman f-Divergence on the Set of Positive Definite Trace Operators of Infinite Dimensional Systems %A 李田 %A 张艳芳 %A 贺衎 %J Advances in Applied Mathematics %P 996-1002 %@ 2324-8009 %D 2022 %I Hans Publishing %R 10.12677/AAM.2022.113107 %X 设H为无限维的可分Hilbert空间,令PTr(H)表示H上所有的正定的迹类算子组成的集合。该文主要研究了无限维的可分Hilbert空间H上正迹类算子的保持问题,给出了PTr(H)上保持满足某些条件的可微凸函数对应的Bregman f-散度和Umegaki相对熵(函数x?xlogx对应的Bregman散度)的双射的完全刻画。
Let H be an infinite separable Hilbert space and PTr(H) represent the set of all positive trace operators on H. In this paper, we characterize the bijective maps on PTr(H) preserving Bregman f-divergence where f is a differentiable convex function satisfying certain conditions and Umegaki relative entropy (Bregman divergence corresponding to function x?xlogx); then we show that these maps are unitary transformations or anti-unitary transformations. %K 正迹类算子,Bregman f-散度,Umegaki相对熵,保持
Positive Definite Trace Operators %K Bregman f-Divergence %K Umegaki Relative Entropy %K Preservers %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=49285