|
Applied Physics 2022
氮化硅脊波导在弯曲条件下折射率变化特性
|
Abstract:
本文采用有限–差分方法模拟了绝缘体上氮化硅(Si3N4)脊型弯曲波导的折射率特性。基于弯曲波导的麦克斯韦方程,本文对弯曲波导芯层内折射率随波导半径与结构的变化进行了分析。进而,利用有限–差分算法的软件MODE Solutions的仿真结果表明,在脊型波导结构下,弯曲的波导结构随着弯曲半径的增加导致传输光中心发生偏移,造成TE/TM模式的有效折射率发生变化。该研究对于各波导器件中脊型波导弯曲设计评估具有重要意义。
In this paper, the refractive index characteristics of silicon nitride (Si3N4) bent rib waveguide on Silicon-on-Insulator are simulated by finite-difference method. Based on the Maxwell’s equations of bent waveguides, the refractive index changes of the core with the radius and structure of a bent waveguide are analyzed. Then, our simulation results from the MODE Solutions of the Finite-Difference software show that, for a bent rib waveguide structure, the center of transmitted light shifts with the increase of bending radius, and the effective refractive index of TE/TM mode changes with the increase of bending radius. This research is of great significance for the design and evaluation of various bending rib waveguide devices.
[1] | 管小伟, 吴昊, 戴道锌. 硅基混合表面等离子体纳米光波导及集成器件[J]. 中国光学, 2014, 7(2): 15. |
[2] | 高峰, 秦莉, 陈泳屹, 等. 弯曲波导研究进展及其应用[J]. 中国光学, 2017, 10(2): 18. |
[3] | Bahadori, M., Nikdast, M., Cheng, Q., Bergman, K. (2019) Universal Design of Waveguide Bends in Silicon-on-Insulator Photonics Platform. Journal of Lightwave Technology, 37, 3044-3054.
https://doi.org/10.1109/JLT.2019.2909983 |
[4] | Brimont, A., Hu, X., Cueff, S., et al. (2016) Low-Loss and Compact Silicon Rib Waveguide Bends. IEEE Photonics Technology Letters, 28, 299-302. https://doi.org/10.1109/LPT.2015.2495230 |
[5] | Heiblum, M. and Harris, J. (1975) Analysis of Curved Optical Waveguides by Conformal Transformation. IEEE Journal of Quantum Electronics, 11, 75-83. https://doi.org/10.1109/JQE.1975.1068563 |
[6] | Garth, S.J. (1987) Modes on a Bent Optical Waveguide. IEE Proceedings—Optoelectronic, 134, 221-229.
https://doi.org/10.1049/ip-j.1987.0039 |
[7] | Thyagarajan, K. Shenoy, M.R. and Ghatak, A.K. (1987) Accurate Numerical Method for the Calculation of Bending Loss in Optical Waveguides Using a Matrix Approach. Optics Letters, 12, 296-298.
https://doi.org/10.1364/OL.12.000296 |
[8] | Gu, J.S. and Besse, P.A. (1991) Method of Lines for the Analysis of the Propagation Characteristics of Curved Optical Rib Waveguides. IEEE Journal of Quantum Electronics, 27, 531-537. https://doi.org/10.1109/3.81359 |
[9] | Berglund, W. and Gopinath, A. (2000) WKB Analysis of Bend Losses in Optical Waveguides. Journal of Lightwave Technology, 18, 1161-1166. https://doi.org/10.1109/50.857763 |
[10] | Lidgate, C.S. (2002) Conformal Mapping: Limitations for Waveguide Bend Analysis. IEE Proceedings—Science, Measurement and Technology, 149, 262-266. https://doi.org/10.1049/ip-smt:20020597 |
[11] | Xiao, J. and Sun, X. (2010) Full-Vector Analysis of Optical Dielectric Waveguide Bends Using Improved Finite Difference Method Based on E Fields in Cylindrical Coordinate Systems. Journal of Optics, 12, Article No. 055404.
https://doi.org/10.1088/2040-8978/12/5/055404 |
[12] | Han, Z., Zhang, P. and Bozhevolnyi, S.I. (2013) Calculation of Bending Losses for Highly Confined Modes of Optical Waveguides with Transformation Optics. Optics Letters, 38, 1778-1780. https://doi.org/10.1364/OL.38.001778 |
[13] | Lui, W.W., Xu, C.-L., Hirono, T., Yokoyama, K. and Huang, W.-P. (1998) Full-Vector Wave Propagation in Semiconductor Optical Bending Waveguides and Equivalent Straight Approximations. Journal of Lightwave Technology, 16, 910-914. https://doi.org/10.1109/50.669038 |
[14] | Soref, R.A., Schmidtchen, J. and Petermann, K. (1991) Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2. IEEE Journal of Quantum Electronics, 27, 1971-1974. https://doi.org/10.1109/3.83406 |