|
吡咯霉素类天然产物合成及活性研究进展
|
Abstract:
自20世纪以来,抗生素耐药性被认为是影响人类健康的重要因素之一,同时对全球经济发展构成了严重威胁。因此,新型抗生素的开发与应用刻不容缓。天然吡咯霉素是从放线菌和链霉菌属的发酵液中分离得到的多卤化代谢物,因其强大的抗菌活性具有成为新型抗菌剂的巨大潜质,受到医药和农药届的广泛关注。概述了吡咯霉素类化合物的分离、生物合成、全合成及其生物活性研究进展。
Since the 20th century, antibiotic resistance has been regarded as one of the important factors af-fecting human health, and has posed a serious threat to global economic development. Therefore, the development and application of new antibiotics is urgent. Natural pyrrolomycinsare polyhalo-genated metabolites isolated from the fermentation broth of Actinomyces and Streptomyces. Be-cause of its significant antibacterial activity and novel chemical structure, it has great potential to become a new type of antibacterial agent, and has received extensive attention in the field of medi-cine and pesticides. The research progress on the isolation, biosynthesis, total synthesis and biolog-ical activity of natural pyrrolomycins was reviewed.
[1] | Li, G., Lou, H.X., et al. (2018) Strategies to Diversify Natural Products for Drug Discovery. Medicinal Research Re-views, 38, 1255-1294. https://doi.org/10.1002/med.21474 |
[2] | Rodrigues, T., Reker, D., Schneider, P., et al. (2016) Counting on Natural Products for Drug Design. Nature Chemistry, 8, 531-541. https://doi.org/10.1038/nchem.2479 |
[3] | Patridge, E., Gareiss, P., Kinch, M.S., et al. (2016) An Analysis of FDA-Approved Drugs: Natural Products and Their derivatives. Drug Discovery Today, 21, 204-207. https://doi.org/10.1016/j.drudis.2015.01.009 |
[4] | Cragg, G.M., Newman, D.J., et al. (2013) Natural Products: A Continuing Source of Novel Drug Leads. Biochimica et Biophysica Acta—General Subjects, 1830, 3670-3695. https://doi.org/10.1016/j.bbagen.2013.02.008 |
[5] | Koehn, F.E., Carter, G.T., et al. (2005) The Evolving Role of Natural Products in Drug Discovery. Nature Reviews Drug Discovery, 4, 206-220. https://doi.org/10.1038/nrd1657 |
[6] | Newman, D.J., Cragg, G.M., et al. (2020) Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of Natural Products, 83, 770-803. https://doi.org/10.1021/acs.jnatprod.9b01285 |
[7] | 薛万俐, 李治强, 张晨静, 等. 微生物制药与微生物药物研究现状[J]. 今日药学, 2014, 24(8): 623-624. |
[8] | 甄永苏. 微生物药物和抗体药物——发现和研制新药的重要领域[J]. 药学学报, 2003,38(7): 483-484. |
[9] | 武临专, 洪斌, 等. 微生物药物合成生物学研究进展[J]. 药学学报, 2003, 48(2): 155-160. |
[10] | 陶阿丽, 苏诚, 余大群, 等. 微生物制药研究进展与展望[J]. 广州化工, 2012, 40(16): 17-19. |
[11] | Merker, M., Tueffers, L., Vallier, M., et al. (2020) Evolutionary Approaches to Combat Antibiotic Re-sistance: Opportunities and Challenges for Precision Medicine. Frontiers in Immunology, 11, Article No. 1938.
https://doi.org/10.3389/fimmu.2020.01938 |
[12] | Cascioferro, S., Raimondi, M.V., Cusimano, M.G., et al. (2015) Pharmaceutical Potential of Synthetic and Natural Pyrrolomycins. Molecules, 20, 21658-21671. https://doi.org/10.3390/molecules201219797 |
[13] | Zhang, X., Parry, R.J., et al. (2007) Cloning and Characterization of the Pyrrolomycin Biosynthetic Gene Clusters from Actinosporangium vitaminophilum ATCC 31673 and Streptomy-ces sp. Strain UC 11065. Antimicrobial Agents and Chemotherapy, 51, 946-957. https://doi.org/10.1128/AAC.01214-06 |
[14] | Nitulescu, G., Margina, D., Zanfirescu, A., et al. (2021) Targeting Bacterial Sortases in Search of Anti-Virulence Therapies with Low Risk of Resistance Development. Pharmaceuticals, 14, 415-438.
https://doi.org/10.3390/ph14050415 |
[15] | Schillaci, D., Petruso, S., Sciortino, V., et al. (2005) 3,4,5,3’,5’-Pentabromo-2-(2’-hydroxybenzoyl)pyrrole: A Potential Lead Compound as Anti-Gram-Positive and An-ti-Biofilm Agent. International Journal of Antimicrobial Agents, 25, 338-340.
https://doi.org/10.1016/j.ijantimicag.2004.11.014 |
[16] | Schillaci, D., Petruso, S., Raimondi, M.V., et al. (2010) Pyrrolomycins as Potential Anti-Staphylococcal Biofilms Agents. Biofouling, 26, 433-438. https://doi.org/10.1080/08927011003718673 |
[17] | Arima, K., Imanaka, H., Kousaka, M., et al. (1965) Studies on Pyrrolnitrin, a New Antibiotic. I. Isolation and Properties of Pyrrolnitrin. Journal of Antibiotics, 18, 201-204. |
[18] | Koyama, M., Kodama, Y., Tsuruoka, T., et al. (1981) Structure and Synthesis of Pyrrolomycin A, a Chlorinated Nitro-Pyrrole Antibiotic. Journal of Antibiotics, 34, 1569-1576. https://doi.org/10.7164/antibiotics.34.1569 |
[19] | Kaneda, M., Akamura, S., Ezaki, N., et al. (1981) Structure of Pyrrolomycin B, a Chlorinated Nitro-Pyrrole Antibiotic. Journal of Antibiotics, 34, 1366-1368. https://doi.org/10.7164/antibiotics.34.1366 |
[20] | Ezaki, N., Koyama, M., Shomura, T., et al. (1983) Pyrrolomycins C, D and E, New Members of Pyrrolomycins. Journal of Antibiotics, 36, 1263-1267. https://doi.org/10.7164/antibiotics.36.1263 |
[21] | Koyama, M., Ezaki, N., Tsuruoka, T., et al. (1983) Structural Studies on Pyrrolomycins C, D and E. Journal of Antibiotics, 36, 1483-1489. https://doi.org/10.7164/antibiotics.36.1483 |
[22] | Ezaki, N., Koyama, M., Kodama, Y., et al. (1983) Pyrrolomycins F1, F2a, F2b and F3, New Metabolites Produced by the Addition of Bromide to the Fermentation. Journal of Antibiotics, 36, 1431-1438.
https://doi.org/10.7164/antibiotics.36.1431 |
[23] | Charan, R.D., Schlingmann, G., Bernan, V.S., et al. (2005) Addi-tional Pyrrolomycinsfrom Cultures of Streptomyces fumanus. Journal of Natural Products, 68, 277-279. https://doi.org/10.1021/np0496542 |
[24] | Charan, R.D., Schlingmann, G., Bernan, V.S., et al. (2006) Diox-apyrrolomycin Biosynthesis in Streptomyces fumanus. Journal of Natural Products, 69, 29-33. https://doi.org/10.1021/np0503404 |
[25] | Ezaki, N., Shomura, T., Koyama, M., et al. (1981) New Chlorinated Ni-tro-Pyrrole Antibiotics, Pyrrolomycin A and B SE-2080 A and B. The Journal of Antibiotics, 34, 1363-1365. https://doi.org/10.7164/antibiotics.34.1363 |
[26] | Conder, G.A., Zielinski, R.J., Johnson, S.S., et al. (1992) Anthel-mintic Activity of Dioxapyrrolomycin. Journal of Antibiotics, 45, 977-983. https://doi.org/10.7164/antibiotics.45.977 |
[27] | Aldhafiri, W.N., Chhonker, Y.S., Zhang, Y., et al. (2020) Assess-ment of Tissue Distribution and Metabolism of MP1, a Novel Pyrrolomycin, in Mice Using a Validated LC-MS/MS Method. Molecules, 25, 5898.
https://doi.org/10.3390/molecules25245898 |
[28] | 张鹏翔. 以二噁吡咯霉素为先导的吡咯类杀虫杀螨剂的创制研究[D]: [硕士学位论文]. 天津: 南开大学, 2009. |
[29] | Liu, Y.X., Zhang, P.X., Li, Y.Q., et al. (2014) Design, Syn-thesis, and Biological Evaluation of 2-Benzylpyrroles and 2-Benzoylpyrroles Based on Structures of Insecticidal Chlorfenapyr and Natural Pyrrolomycins. Molecular Diversity, 18, 593-598. https://doi.org/10.1007/s11030-014-9515-9 |
[30] | Yang, Z., Liu, Y., Ahn, J., et al. (2016) Novel Fluorinated Pyr-rolomycinsas Potent Anti-Staphylococcal Biofilm Agents: Design, Synthesis, Pharmacokinetics and Antibacterial Activi-ties. European Journal of Medical Chemistry, 124, 129-137.
https://doi.org/10.1016/j.ejmech.2016.08.017 |