令 G = (V (G), E(G)) 是—个简单连通图,函数 f : V (G) → {0, 1, 2, 3} 满足:1) 如果 f (v) = 0,那么至少存在v 的两个邻点 v1, v2, 使得f (v1) = f (v2) = 2,或至少存在 — 个邻点 u 使得f (u) = 3; 2) 如果 f (v) = 1,那么至少存在 v 的—个邻点 u 使得f (u) = 2或3。则称 f 为图 G 的—个双罗马控制函数(DRDF)。—个双罗马控制函数的权值为 f (V (G)) = ∑u∈V (G) f (u)。图 G 的双罗马控制函数的最小权值称为图 G 的双罗马控制数,记作 γdR(G)。权值为 γdR(G) 的双罗马控制函数称为 G 的 γdR - 函数。本文主要给出了一些特殊图如:Pm?Pn (m = 2, 3),Pn,t,Kn?,M (Cn),M (Pn) 的双罗马控制数的确切值。
Let G = (V (G), E(G)) be a simple connected graph, a function f : V (G) → {0, 1, 2, 3} satisfies with the property that 1) if f (v) = 0, then vertex v must exist at least two neighbors v1, v2 such that f (v1) = f (v2) = 2 or? one? neighbor? u such? that? f (u) = 3;? 2) if f (v) = 1,? then there must exist at least one neighbor u of v such that? f (u) = 2? or 3, and f is called a double Roman domination function (DRDF). The weight of a DRDF is f (V (G)) = ∑u∈V (G) f (u). The minimum weight of a DRDF on G is the double Roman domination number, denoted by γdR(G). A double Roman domination function with the weight of γdR(G) is called a γdR-function of G. In this paper, we present the exact values of the double Roman domination numbers of some special graphs, such as? Pm?Pn (m = 2, 3),? Pn,t,? Kn?,? M (Cn),? M (Pn).
References
[1]
Berge, C. (1962) Theory of Graphs and Its Applications. Methuen, London.
[2]
Ore, O. (1962) Theory of Graphs. American Mathematical Society, Providence.
[3]
Stewart, I. (1999) Defend the Roman Empire. Scientific American, 281, 136-139. https://doi.org/10.1038/scientificamerican1299-136
[4]
Beeler, R.A., Haynes, T.W. and Hedetniemi, S.T. (2016) Double Roman Domination. Discrete Applied Mathematics, 211, 23-29. https://doi.org/10.1016/j.dam.2016.03.017
[5]
Anu, V. and Lakshmanan, S.A. (2018) Double Roman Domination Number. Discrete Applied Mathematics, 244, 198-204. https://doi.org/10.1016/j.dam.2018.03.026
[6]
Ahangar, H.A., Chellali, M. and Sheikholeslami, S.M. (2017) On the Double Roman Domina- tion in Graphs. Discrete Applied Mathematics, 232, 1-7. https://doi.org/10.1016/j.dam.2017.06.014
[7]
陈优. 图的双罗马控制[D]: [硕士学位论文]. 郑州: 郑州大学, 2018.
[8]
杜良丽. 格子图的双罗马控制集[J]. 称州学院学报, 2021, 23(2): 54-57.
[9]
Nazari-Moghaddam, S. and Volkmann, L. (2020) Critical Concept for Double Roman Domi- nation in Graphs. Discrete Mathematics, Algorithms and Applications, 12, 1-12. https://doi.org/10.1142/S1793830920500202
[10]
Bonchev, D.I. and Klein, D.J. (2002) On the Wiener Number of Thorn Trees, Stars, Rings, and Rods. Croatica Chemica Acta, 75, 613-620.