%0 Journal Article %T 特殊图的双罗马控制数的研究
Research on the Double Roman Domination Number of Some Special Graphs %A 刘沙沙 %A 边红 %A 于海征 %A 魏丽娜 %J Advances in Applied Mathematics %P 278-287 %@ 2324-8009 %D 2022 %I Hans Publishing %R 10.12677/AAM.2022.111035 %X
令 G = (V (G), E(G)) 是—个简单连通图,函数 f : V (G) → {0, 1, 2, 3} 满足:1) 如果 f (v) = 0,那么至少存在v 的两个邻点 v1, v2, 使得f (v1) = f (v2) = 2,或至少存在 — 个邻点 u 使得f (u) = 3; 2) 如果 f (v) = 1,那么至少存在 v 的—个邻点 u 使得f (u) = 2或3。则称 f 为图 G 的—个双罗马控制函数(DRDF)。—个双罗马控制函数的权值为 f (V (G)) = ∑u∈V (G) f (u)。图 G 的双罗马控制函数的最小权值称为图 G 的双罗马控制数,记作 γdR(G)。权值为 γdR(G) 的双罗马控制函数称为 G 的 γdR - 函数。本文主要给出了一些特殊图如:Pm?Pn (m = 2, 3),Pn,t,Kn?,M (Cn),M (Pn) 的双罗马控制数的确切值。
Let G = (V (G), E(G)) be a simple connected graph, a function f : V (G) → {0, 1, 2, 3} satisfies with the property that 1) if f (v) = 0, then vertex v must exist at least two neighbors v1, v2 such that f (v1) = f (v2) = 2 or  one  neighbor  u such  that  f (u) = 3;  2) if f (v) = 1,  then there must exist at least one neighbor u of v such that  f (u) = 2  or 3, and f is called a double Roman domination function (DRDF). The weight of a DRDF is f (V (G)) = u∈V (G) f (u). The minimum weight of a DRDF on G is the double Roman domination number, denoted by γdR(G). A double Roman domination function with the weight of γdR(G) is called a γdR-function of G. In this paper, we present the exact values of the double Roman domination numbers of some special graphs, such as  Pm?Pn (m = 2, 3),  Pn,t,  Kn?,  M (Cn),  M (Pn).
%K 双罗马控制函数,双罗马控制数,强积,刺图,中间图
Double Roman Domination Function %K Double Roman Domination Number %K Strong Product %K Thorn Graph %K Middle Graph %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=48308