全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

涉及亚纯函数差分算子的唯一性定理
Uniqueness of Meromorphic Function Concerning Difference Operator

DOI: 10.12677/PM.2022.121025, PP. 209-217

Keywords: 亚纯函数,唯一性,差分算子
Meromorphic Function
, Uniqueness, Difference Operator

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文运用Nevanlinna值分布论研究了有穷级亚纯函数与其差分算子分担函数的问题,得到了如下结果。设f(z)是有穷级超越亚纯函数,a(z)(?∞),b(z)是f(z)的Borel例外函数且a(z),b(z)∈S(f),其中a(z)是满足ρ(a(z)) < 1的亚纯函数。令η是满足Δηf(z)?0的非零常数。如果f(z)和Δηf(z)CM分担Δηa(z),b(z),那么,a(z)=0,b(z)=∞,f(z)=BeAz,其中A,B是非零常数。本文是对陈创鑫和张然然结果的改进和推广。
In this paper, we study the uniqueness of meromorphic functions by Nevanlinna value distribution theory and obtain the following result. Let f(z) be a transcendental meromorphic function of finite order and a(z)(∈S(f)),b(z)(∈S(f)) be a Borel exceptional function of f(z), where a(z)(?∞) is a meromorphic function satisfying ρ(a(z)) < 1. Let η be a nonzero constant satisfying Δηf(z)?0. If f(z) and Δηf(z) share Δηa(z),b(z) CM, then a(z)=0,b(z)=∞,f(z)=BeAz, where A,B are non-zero constants. Our result is an improvement of the theorem given by Chen and Zhang.

References

[1]  Hayman, W.K. (1964) Meromorphic Functions. Clarendon Press, Oxford.
[2]  Yang, C.C. and Yi, H.X. (2003) Uniqueness Theory of Meromorphic Functions. Kluwer Academic Publishers Group, Dordrecht.
[3]  Yang, L. (1993) Value Distribution Theory. Springer, Berlin.
[4]  Csillag, P. (1935) Uber ganze Funktionen, welehe drei nicht verschwindende Ableitungen besitzen. Mathematische Annalen, 110, 745-752.
https://doi.org/10.1007/BF01448056
[5]  Tumura, Y. (1937) On the Extensions of Borels Theorem and Saxer-Csillags Theorem. Proceedings of the Physico-Mathematical Society of Japan, 19, 29-35.
[6]  Halburd, R.G. and Korhonen, R.J. (2006) Difference Analogue of the Lemma on the Logaritheoremic Derivative with Applications to Difference Equations. Journal of Mathematical Analysis and Applications, 314, 477-487.
https://doi.org/10.1016/j.jmaa.2005.04.010
[7]  Halburd, R.G. and Korhonen, R.J. (2006) Nevanlinna Theory for the Difference Operator. Annales Academiae Scientiarum Fennicae Mathematica, 31, 463-478.
[8]  Chiang, Y.M. and Feng, S.J. (2008) On the Nevanlinna Characteristic of and Difference Equations in the Complex Plane. The Ramanujan Journal, 16, 105-129.
https://doi.org/10.1007/s11139-007-9101-1
[9]  Chen, Z.X. (2013) Relation-ships between Entire Functions and Their Forward Differences. Complex Variables and Elliptic Equations, 58, 299-307.
https://doi.org/10.1080/17476933.2011.584251
[10]  Chen, C.X. and Chen, Z.X. (2016) The Uniqueness of Meromorphic Functions and Their Differences. Acta Mathematica Sinica, 59, 821-834.
[11]  陈创鑫, 张然然. 涉及整函数差分算子的唯一性定理[J]. 数学年刊A辑, 2021, 42(1): 11-22.
[12]  Bergweiler, W. and Langley, J.K. (2007) Zeros of Differences of Meromorphic Functions. Mathematical Proceedings of the Cambridge Philosophical Society, 142, 133-147.
https://doi.org/10.1017/S0305004106009777
[13]  Fang, M.L. and Wang, Y.F. (2021) Higher Order Difference Operators and Uniqueness of Meromorphic Functions. Analysis and Mathematical Physics, 11, Article No. 93.
https://doi.org/10.1007/s13324-021-00529-w
[14]  Laine, I. (1993) Nevanlinna Theory and Complex Differential Equations. de Gruyter, Berlin.
https://doi.org/10.1515/9783110863147
[15]  Gross, F. (1972) Factorization of Meromorphic Function. U.S. Government Printing Office, Washington DC.
[16]  Laine, I. and Yang, C.C. (2007) Clunie Theorems for Difference and Q-Difference Polynomials. Journal of the London Mathematical Society, 76, 556-566.
https://doi.org/10.1112/jlms/jdm073

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133