%0 Journal Article %T 涉及亚纯函数差分算子的唯一性定理
Uniqueness of Meromorphic Function Concerning Difference Operator %A 邱仕林 %A 郑瑞林 %A 刘丹 %J Pure Mathematics %P 209-217 %@ 2160-7605 %D 2022 %I Hans Publishing %R 10.12677/PM.2022.121025 %X
本文运用Nevanlinna值分布论研究了有穷级亚纯函数与其差分算子分担函数的问题,得到了如下结果。设f(z)是有穷级超越亚纯函数,a(z)(?∞),b(z)是f(z)的Borel例外函数且a(z),b(z)∈S(f),其中a(z)是满足ρ(a(z)) < 1的亚纯函数。令η是满足Δηf(z)?0的非零常数。如果f(z)和Δηf(z)CM分担Δηa(z),b(z),那么,a(z)=0,b(z)=∞,f(z)=BeAz,其中A,B是非零常数。本文是对陈创鑫和张然然结果的改进和推广。
In this paper, we study the uniqueness of meromorphic functions by Nevanlinna value distribution theory and obtain the following result. Let f(z) be a transcendental meromorphic function of finite order and a(z)(∈S(f)),b(z)(∈S(f)) be a Borel exceptional function of f(z), where a(z)(?∞) is a meromorphic function satisfying ρ(a(z)) < 1. Let η be a nonzero constant satisfying Δηf(z)?0. If f(z) and Δηf(z) share Δηa(z),b(z) CM, then a(z)=0,b(z)=∞,f(z)=BeAz, where A,B are non-zero constants. Our result is an improvement of the theorem given by Chen and Zhang.
%K 亚纯函数,唯一性,差分算子
Meromorphic Function %K Uniqueness %K Difference Operator %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=48373