全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Improving the Compatibility of Biodegradable Poly (Lactic Acid) Toughening with Thermoplastic Polyurethane (TPU) and Compatibilized Meltblown Nonwoven

DOI: 10.4236/ojcm.2022.121001, PP. 1-15

Keywords: Poly (Lactic Acid), Thermoplastic Polyurethane, Meltblown, Toughening, Nonwoven

Full-Text   Cite this paper   Add to My Lib

Abstract:

Poly (Lactic Acid) (PLA) is a biodegradable polymer which originates from natural resources such as corn and starch, offering excellent strength, biodegradability, nevertheless its inherent brittleness and low impact resistance properties have limited its application. On the other hand, Thermoplastic Polyurethane (TPU) has high toughness, durability and flexibility, which is one of the most potential alternatives for enhancing the flexibility and mechanical strength of Poly (Lactic Acid) (PLA) by blending it with a compatibilizer. With the aim to improve the mechanical and thermal properties of Poly (Lactic Acid) (PLA) meltblown nonwovens, The Thermoplastic Polyurethane (TPU) was melt blended with Poly

References

[1]  Nayak, R., Padhye, R., Kyratzis, I.L., Truong, Y.B. and Arnold, L. (2012) Recent Advances in Nanofibre Fabrication Techniques. Textile Research Journal, 82, 129-147.
https://doi.org/10.1177/0040517511424524
[2]  Tan, D.H., Zhou, C., Ellison, C.J., Kumar, S., Macosko, C.W. and Bates, F.S. (2010) Meltblown Fibers: Influence of Viscosity and Elasticity on Diameter Distribution. Journal of Non-Newtonian Fluid Mechanics, 165, 892-900.
https://doi.org/10.1016/j.jnnfm.2010.04.012
[3]  Moyo, D., Patanaik, A. and Anandjiwala, R.D. (2012) Process Control in Nonwovens Production. Woodhead Publishing Limited, Sawston.
https://doi.org/10.1533/9780857095633.3.279
[4]  ASTM International (2004) Standard Test Method for Thickness of Nonwoven Fabrics. ASTM International, West Conshohocken, 1-4.
[5]  Ma, Z., Kotaki, M., Yong, T., He, W. and Ramakrishna, S. (2005) Surface Engineering of Electrospun Polyethylene Terephthalate (PET) Nanofibers towards Development of a New Material for Blood Vessel Engineering. Biomaterials, 26, 2527-2536.
https://doi.org/10.1016/j.biomaterials.2004.07.026
[6]  Peng, M., Jia, H., Jiang, L., Zhou, Y. and Ma, J. (2018) Study on Structure and Property of PP/TPU Melt-Blown Nonwovens. The Journal of the Textile Institute, 110, 468-475.
[7]  Lin, W. and Qu, J.P. (2019) Enhancing Impact Toughness of Renewable Poly(lactic acid)/Thermoplastic Polyurethane Blends via Constructing Cocontinuous-Like Phase Morphology Assisted by Ethylene-Methyl Acrylate-Glycidyl Methacrylate Copolymer. Industrial & Engineering Chemistry Research, 58, 10894-10907.
https://doi.org/10.1021/acs.iecr.9b01644
[8]  Castro-Aguirre, E., Iñiguez-Franco, F., Samsudin, H., Fang, X. and Auras, R. (2016) Poly(Lactic Acid)—Mass Production, Processing, Industrial Applications, and End of Life. Advanced Drug Delivery Reviews, 107, 333-366.
https://doi.org/10.1016/j.addr.2016.03.010
[9]  Santoro, M., Shah, S.R., Walker, J.L. and Mikos, A.G. (2016) Poly(Lactic Acid) Nanofibrous Scaffolds for Tissue Engineering. Advanced Drug Delivery Reviews, 107, 206-212.
https://doi.org/10.1016/j.addr.2016.04.019
[10]  Dong, Y., Marshall, J., Haroosh, H.J., Moghaddam, S.M., Liu, D., Qi, X. and Lau, K. (2015) Polylactic Acid (PLA)/Halloysite Nanotube (HNT) Composite Mats: Influence of HNT Content and Modification. Composites: Part A, 76, 28-36.
https://doi.org/10.1016/j.compositesa.2015.05.011
[11]  Md Obaidur Rahman, B. and Zhu, F.C. (2021) Study on Toughened Polylactic Acid and Its Meltblown Nonwovens by Thermoplastic Polyurethane. Silk, 58, 28-35.
https://doi.org/10.3969/j.issn.1001-7003.2021.10.006
[12]  Sinha-Ray, S., Yarin, A.L. and Pourdeyhimi, B. (2014) Meltblown Fiber Mats and Their Tensile Strength. Polymer (Guildf), 55, 4241-4247.
https://doi.org/10.1016/j.polymer.2014.05.025
[13]  Poomalai, P. (2005) Siddaramaiah, Studies on Poly(Methyl Methacrylate) (PMMA) and Thermoplastic Polyurethane (TPU) Blends. Journal of Macromolecular Science Part A Pure and Applied Chemistry, 42, 1399-1407.
https://doi.org/10.1080/10601320500205764
[14]  Jia, S., Wang, Z., Zhu, Y., Chen, L. and Fu, L. (2015) Composites of Poly(Lactic) Acid/Thermoplastic Polyurethane/Mica with Compatibilizer: Morphology, Miscibility and Interphase. RSC Advances, 5, 98915-98924.
https://doi.org/10.1039/C5RA17938F
[15]  Sin, L.T. and Tueen, B.S. (2019) Thermal Properties of Poly(Lactic Acid). In: Sin, L.T. and Tueen, B.S., Eds., Polylactic Acid: A Practical Guide for the Processing, Manufacturing, and Applications of PLA, Second Edition, Elsevier, Amsterdam, 97-133.
https://doi.org/10.1016/B978-0-12-814472-5.00003-0
[16]  Zhang, L., Xiong, Z., Shams, S.S., Yu, R., Huang, J., Zhang, R. and Zhu, J. (2015) Free Radical Competitions in Polylactide/Bio-Based Thermoplastic Polyurethane/Free Radical Initiator Ternary Blends and Their Final Properties. Polymer (Guildf), 64, 69-75.
https://doi.org/10.1016/j.polymer.2015.03.032
[17]  Dogan, S.K., Boyacioglu, S., Kodal, M., Gokce, O. and Ozkoc, G. (2017) Thermally Induced Shape Memory Behavior, Enzymatic Degradation and Biocompatibility of PLA/TPU Blends: “Effects of Compatibilization”. Journal of the Mechanical Behavior of Biomedical Materials, 71, 349-361.
https://doi.org/10.1016/j.jmbbm.2017.04.001
[18]  Kaynak, C. and Meyva, Y. (2014) Use of Maleic Anhydride Compatibilization to Improve Toughness and Other Properties of Polylactide Blended with Thermoplastic Elastomers. Polymers for Advanced Technologies, 25, 1622-1632.
https://doi.org/10.1002/pat.3415
[19]  Sun, M., Huang, S., Yu, M. and Han, K. (2021) Toughening Modification of Polylactic Acid by Thermoplastic Silicone Polyurethane Elastomer. Polymers (Basel), 13, 1953.
https://doi.org/10.3390/polym13121953
[20]  Features, K. (2014) Joncryl® Functional Additives Joncryl® ADR 4400 Polymeric Chain Extender for Food Contact Applications.
[21]  Mahmuda, M.S., Buysa, Y.F., Anuara, H. and Sopyana, I. (2019) Miscibility, Morphology and Mechanical Properties of Compatibilized Polylactic Acid/Thermoplastic Polyurethane Blends. Materials Today: Proceedings, 17, 778-786.
https://doi.org/10.1016/j.matpr.2019.06.362
[22]  Zhu, F., Yu, B., Su, J. and Han, J. (2020) Study on PLA/PA11 Bio-Based Toughening Melt-Blown Nonwovens. Autex Research Journal, 20, 24-31.
https://doi.org/10.2478/aut-2019-0002
[23]  Kilic, N.T., Can, B.N., Kodal, M. and Özkoç, G. (2021) Reactive Compatibilization of Biodegradable PLA/TPU Blends via Hybrid Nanoparticle. Progress in Rubber, Plastics and Recycling Technology, 1-26.
https://doi.org/10.1177/14777606211019423
[24]  Nofar, M. (2020) Effect of TPU Hard Segment Content on the Rheological and Mechanical Properties of PLA/TPU Blends. Journal of Applied Polymer Science, 137, 49387.
https://doi.org/10.1002/app.49387
[25]  Lai, S.M., Wu, W.L. and Wang, Y.J. (2016) Annealing Effect on the Shape Memory Properties of Polylactic Acid (PLA)/Thermoplastic Polyurethane (TPU) Bio-Based Blends. Journal of Polymer Research, 23, Article No. 99.
https://doi.org/10.1007/s10965-016-0993-6
[26]  Ji, X., Gao, F., Geng, Z. and Li, D. (2021) Fabrication of Thermoplastic Polyurethane/Polylactide Shape-Memory Blends with Tunable Optical and Mechanical Properties via a Bilayer Structure Design. Polymer Testing, 97, Article ID: 107135.
https://doi.org/10.1016/j.polymertesting.2021.107135
[27]  Zhu, F., Su, J., Zhao, Y., Hussain, M., Yasin, S., Yu, B. and Han, J. (2019) Influence of Halloysite Nanotubes on Poly(lactic acid) Melt-Blown Nonwovens Compatibilized by Dual-Monomer Melt-Grafted Poly(lactic acid). Textile Research Journal, 89, 4173-4185.
https://doi.org/10.1177/0040517519826926

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133