|
基于2,6-二-(2-吡啶基)-4-吡啶甲酸的紫外法检测辣根过氧化物酶浓度
|
Abstract:
本文首次提出采用2,6-二-(2-吡啶基)-4-吡啶甲酸(配体L)-H2O2-HRP测定HRP酶浓度的新体系。利用紫外考查HRP催化H2O2氧化配体L体系的光谱变化。在pH = 7.2,25℃下,配体L浓度为6 × 10?6 mol/L,H2O2浓度为1 × 10?4 mol/L时,回归方程为A = ?0.0034x + 1.072,线性相关系数为0.9909,该体系的检测范围可达10?8~10?9 mol/L,灵敏度较高,操作简便,抗干扰能力强,稳定性好,可用作检测游离HRP酶的新方法,具有实际的应用前景。
A new system for the determination of horseradish peroxidase concentration by 2,6-di-(2-py- ridyl)-4-picolinic acid (ligand L)-H2O2-HRP was proposed for the first time. The spectral changes of ligand L system catalyzed by HRP for H2O2 oxidation were investigated by UV method. At pH = 7.2 and 25?C, the ligand L concentration is 6 × 10?6 mol/L, H2O2 concentration is 1 × 10?4 mol/L, the regression equation is A = ?0.0034x + 1.072 and the linear correlation coefficient is 0.9909. The detection range of the system can reach 10?8~10?9 mol/L. This method has high sensitivity, simple operation, strong anti-interference ability and good stability. It can be used as a new method for the detection of free HRP enzyme and has practical application prospects.
[1] | Tang, B. and Zhang, L. (2006) FIA-Near-Infrared Spectrofluorimetric Trace Determination of Hydrogen Peroxide Using Tricarchlorobocyanine Dye (Cy.7.Cl) and Horseradish Peroxidase (HRP). Talanta, 68, 876-882.
https://doi.org/10.1016/j.talanta.2005.06.053 |
[2] | Gong, T., Liu, J.F. and Wu, Y.W. (2017) Fluorescence Enhancement of CdTe Quantum Dots by HBcAb-HRP for Sensitive Detection of H2O2 in Human Serum. Biosensors and Bioelectronics, 92, 16-20.
https://doi.org/10.1016/j.bios.2017.01.048 |
[3] | Hu, R.X., Yang, J., Chen, X., et al. (2018) Monomer, Chain, Layer and 3-D Framework Constructed by Linear 4'-(4-Carboxyphenyl)-2,2':6',2''-terpyridine. Inorganica Chimica Acta, 482, 702-708.
ttps://doi.org/10.1016/j.ica.2018.07.006 |
[4] | Drath, O., Gable, R.W., Moubaraki, B., et al. (2018) Synthesis and Properties of Cobalt(II) Coordination Polymers Linked by 4 '-(4-Pyridyl)-2,2 ':6 ',2 ''-terpyridine. Polyhedron, 151, 323-329.
https://doi.org/10.1016/j.poly.2018.05.052 |
[5] | Ferraro, G., Marzo, T., Infrasca, T., et al. (2018) A Case of Extensive Protein Platination: The Reaction of Lysozyme with a Pt(II)-Terpyridine Complex. Dalton Transactions, 47, 8716-8723. https://doi.org/10.1039/C8DT01254G |
[6] | Biniuri, Y., Albada, B., Wolff, M., et al. (2018) Cu2+ or Fe3+ Terpyridine/Aptamer Conjugates: Nucleoapzymes Catalyzing the Oxidation of Dopamine to Aminochrome. ACS Catalysis, 8, 1802-1809.
https://doi.org/10.1021/acscatal.7b03454 |
[7] | Yan, D., Qi, Z., Sun, Y., et al. (2018) Latest Researches in Modified Anode Catalysts for Direct Methanol Fuel Cell (DMFC). Journal of Materials Science and Engineering, 1, 163-168. |
[8] | Qiu, C., Hua, P., Yu, H., et al. (2020) Synthesis and Properties of Octyl Glucoside. Textile Auxiliaries, 37, 22-30. |
[9] | Yao, Y., Chen, J. and Wang, C.W. (2019) Construction and Application of 3D Supramolecular Polymers Based on Pillar[n]arenes. Journal of Nantong University, 18, 8-15. |
[10] | Chen, L.M., Yu, S.S., Xiao, M., et al. (2017) Recognition of Chiral Amines by a Terpyridine-Zn-II-Complex-Based Circular-Dichroism Sensor. European Journal of Organic Chemistry, 16, 2338-2343.
https://doi.org/10.1002/ejoc.201700066 |
[11] | Lin, C.P., Florio, P., Campi, E.M., et al. (2014) Synthesis of Substituted Terpyridine Ligands for Use in Protein Purification. Tetrahedron, 70, 8520-8531. https://doi.org/10.1016/j.tet.2014.09.074 |
[12] | Du, J., Huang, Z., Yu, X.Q., et al. (2013) Highly Selective Fluorescent Recognition of Histidine by a Crown Ether-Terpyridine-Zn(II) Sensor. Chemical Communications, 49, 5399-5401. https://doi.org/10.1039/c3cc42081g |