全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

稀土单原子钇(Y)吸附对锐钛矿TiO2薄膜光催化活性的影响
Influence of Rare Earth Single-Atom Yttrium (Y) Adsorption on the Photocatalytic Activity of TiO2 Thin Film

DOI: 10.12677/MS.2021.1111134, PP. 1155-1164

Keywords: 单原子吸附,锐钛矿薄膜(101)表面,活性位点,杂质能级,光吸收率,光催化活性
Single-Atom Adsorption
, Anatase Thin Film (101) Surface, Active Site, Impurity Level,Optical Absorption, Photocatalytic Activity

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文采用基于密度泛函理论(DFT)的第一性原理计算方法,研究了稀土单原子钇(Y)吸附对锐钛矿薄膜TiO2光催化活性的影响。由于钇原子向锐钛矿TiO2 (101)表面的电荷转移,吸附表面的功函数明显小于纯表面的功函数,表明表面活性增强。钛原子的3d轨道作为杂质能级出现在导带底,变成浅能级,通过缩小带隙来增强光吸收率。当单钇原子被吸附时,表面Ti原子的势能接近于真空能级,显著促进了电子的转移,从而促进了氢的产生。在被激发的TiO2光催化剂中,光诱导电子可以通过表面钛原子转移到目标物种,意味着电子–空穴对能有效地分离而提高光催化活性。此外,由于钇原子的吸附,导带边缘的上移将提高锐钛矿TiO2的还原能力。本研究结果为单金属原子吸附提高光催化性能提供了新的思路。
The effect of single rare earth atom (Y) adsorption on the photocatalytic activity of anatase TiO2 thin film was studied by the first-principles calculation based on density functional theory (DFT). Due to the charge transfer of yttrium atom to anatase TiO2 (101) surface, the work function of the adsorbed surface is significantly smaller than that of the pure surface, indicating that the surface activity is enhanced. The 3d orbital of titanium atom appears as an impurity energy level at the bottom of the conduction band, becoming a shallow energy level and enhancing the optical absorption rate by narrowing the band gap. When the single yttrium atom is adsorbed, the potential energy of the surface Ti atom is close to the vacuum level, which significantly promotes electron transfer and thus hydrogen production. In the excited TiO2 photocatalyst, the photoinduced electrons can be transferred to the target species via the surface titanium atom, meaning that the electron-hole pair can be effectively separated to improve the photocatalytic activity. In addition, due to the adsorption of yttrium atom, the upward shift of the conduction band edge will improve the reduction ability of anatase TiO2. The results of this study provide a new idea for improving the photocatalytic performance of single metal atom adsorption.

References

[1]  周诗文. 掺杂二氧化钛可见光催化活性的密度泛函研究[D]: [博士学位论文]. 长沙: 湖南大学, 2016.
[2]  林俏露. 本征缺陷与Cu离子注入对单晶TiO2及ZnO磁性的影响[D]: [博士学位论文]. 兰州: 兰州大学, 2019.
[3]  Hashimoto, K., Irie, H. and Fujishima, A. (2005) TiO2 Photocatalysis: A Historical Overview and Future Prospects. Japanese Journal of Applied Physics, 44, 8269-8285.
https://doi.org/10.1143/JJAP.44.8269
[4]  Choe, S.H., Yu, C.J., Ri, K.C., Kim, J.S., Jong, U.G., Kye, Y.H. and Hong, S.N. (2019) First-Principles Study of NaxTiO2 with Trigonal Bipyramid Structures: An Insight into Sodium-Ion Battery Anode Applications. Physical Chemistry Chemical Physics, 21, 8408-8417.
https://doi.org/10.1039/C9CP00267G
[5]  Singh, S. and Tripathi, M.N. (2017) Electronic Structure and Optical Properties of Prominent Phases of TiO2: First- Principles Study. Pramana—Journal of Physics, 89, 5-10.
https://doi.org/10.1007/s12043-017-1400-5
[6]  孙桂鹏. 掺杂及空位缺陷对SnO2和TiO2光电性能的影响[D]: [博士学位论文]. 烟台: 鲁东大学, 2016.
[7]  Li, X., Shi, J., Chen, H., Wan, R., Leng, C., Chen, S. and Lei, Y. (2017) A DFT Study on the Modification Mechanism of (Cr, C) Co-Doping for the Electronic and Optical Properties of Anatase TiO2. Computational Materials Science, 129, 295-303.
https://doi.org/10.1016/j.commatsci.2016.12.029
[8]  李健, 周勇. 蜜度泛函理论[M]. 北京: 国防工业出版社, 2014: 1-31.
[9]  谌祺, 郭瑞强, 张黎楠, 夏卫生. 材料缺陷的先进计算-电子结构方法[M]. 北京: 国防工业出版社, 2015: 57-97.
[10]  Bai, Y., Zhang, Q., Zheng, F., Yang, Y., Meng, Q., Zhu, L. and Wang, B. (2017) First-Principles Study on Co-Doping Effect to Enhance Photocatalytic Activity of Anatase TiO2. International Journal of Modern Physics B, 31, 37-48.
https://doi.org/10.1142/S0217979217500369
[11]  Muhammady, S., Nurfani, E., Kurniawan, R., Sutjahja, I.M., Winata, T. and Darma, Y. (2017) The Effect of Ta Dopant on the Electronic and Optical Properties of Anatase TiO2: A First-Principles Study. Materials Research Express, 4, Article ID: 024002.
https://doi.org/10.1088/2053-1591/aa5733
[12]  Ren, D., Li, H. and Cheng, X. (2015) Tailoring the Electronic and Optical Properties of Anatase TiO2 by (S, Nb) Co-Doping from a DFT plus U Calculation. Solid State Communications, 223, 54-59.
https://doi.org/10.1016/j.ssc.2015.09.011
[13]  Chen, H., Li, X., Wan, R., Kao-Walter, S., Lei, Y. and Leng, C. (2018) A DFT Study on Modification Mechanism of (N, S) Interstitial Co-Dopedrutile TiO2. Chemical Physics Letters, 695, 8-18.
https://doi.org/10.1016/j.cplett.2018.01.044
[14]  Chen H., Li, X. and Wan, R. (2017) Theoretical Studies on the Electronic Structure and Optical Absorption Property of (Ni, C) Co-Doped Anatase TiO2. Computational Condensed Matter, 13, 16-28.
https://doi.org/10.1016/j.cocom.2017.08.005
[15]  Li, X., Shi, J., Chen, H., Wan, R., Leng, C. and Lei, Y. (2016) Electronic and Optical Properties Study on Fe-B Co- Doped Anatase TiO2. Chemical Physics, 477, 52-60.
https://doi.org/10.1016/j.chemphys.2016.08.028
[16]  Chermahini, A.N., Hosseinzadeh, B., Beni, A.S., Teimouri, A. and Moradi, M. (2014) A Periodic Density Functional Theory Study of Tetrazole Adsorption on Anatase Surfaces: Potential Application of Tetrazole Rings in Dye-Sensitized Solar Cells. Journal of Molecular Modeling, 20, 2086.
https://doi.org/10.1007/s00894-014-2086-y
[17]  Prajongtat, P., Suramitr, S., Nokbin, S., Nakajima, K., Mitsuke, K. and Hannongbua, S. (2017) Density Functional Theory Study of Adsorption Geometries and Electronic Structures of Azo-Dye-Based Molecules on Anatase TiO2, Surface for Dye-Sensitized Solar Cell Applications. Journal of Molecular Graphics and Modelling, 76, 551-561.
https://doi.org/10.1016/j.jmgm.2017.06.002
[18]  Yao, M., Ji, Y., Wang, H., Ao, Z., Li, G. and An, T. (2017) The Adsorption Mechanisms of Typical Carbonyl-Con- taining Volatile Organic Compounds on Anatase TiO2 (001) Surface: A DFT Investigation. The Journal of Physical Chemistry C, 121, 13717-13722.
https://doi.org/10.1021/acs.jpcc.7b02964
[19]  Zhang, X., Chen, Q., Hu, W. and Zhang, J. (2013) A DFT Study of SF6 Decomposed Gas Adsorption on an Anatase (101) Surface. Applied Surface Science, 286, 47-53.
https://doi.org/10.1016/j.apsusc.2013.09.005
[20]  Varilla, L.A.A., Seriani, N. and Montoya, J.A. (2019) Molecular Adsorption and Dissociation of CO2 on TiO2 Anatase (001) Activated by Oxygen Vacancies. Journal of Molecular Modeling, 25, 231-238.
https://doi.org/10.1007/s00894-019-4103-7
[21]  Chetri, P., Basyach, P. and Choudhury, A. (2014) Structural, Optical and Photocatalytic Properties of TiO2/SnO2 and SnO2/TiO2 Core-Shell Nanocomposites, an Experimental and DFT Investigation. Chemical Physics, 434, 1-10.
https://doi.org/10.1016/j.chemphys.2014.02.007
[22]  焦俊荣. W掺杂及WO3复合TiO2的磁性能和光学性能研究[D]: [博士学位论文]. 太原: 太原科技大学, 2014.
[23]  Xie, K., Jia, Q., Wang, Y., Zhang, W. and Xu, J. (2018) The Electronic Structure and Optical Properties of Anatase TiO2 with Rare Earth Metal Dopants from First-Principles Calculations. Materials, 11, 179-187.
https://doi.org/10.3390/ma11020179
[24]  Yan, C., Zeng, Q., Zhu, J. and Cao, Q. (2019) Influence of Zr-S Co-Doping on the Electronic Structure and Optical Properties of Anatase TiO2: First-Principles GGA + U Method. Applied Physics A, 125, 121-129.
https://doi.org/10.1007/s00339-019-2416-0
[25]  徐天华. 计算机模拟方法在TiO2掺杂研究中的应用[D]: [博士学位论文]. 杭州: 浙江大学, 2006.
[26]  Jin, C., Dai, Y., Wei, W., Ma, X.C., Li, M.M. and Huang, B.B. (2017) Effects of Single Metal Atom (Pt, Pd, Rh and Ru) Adsorption on the Photocatalytic Properties of Anatase TiO2. Applied Surface Science, 426, 639-646.
https://doi.org/10.1016/j.apsusc.2017.07.065
[27]  Xing, J., Chen, J., Li, Y., Yuan, W., Zhou, Y., Zheng, L., Wang, H., Hu, P., Wang, Y., Zhao, H., Wang, Y. and Yang, H. (2014) Stable Isolated Metal Atoms as Activesites for Photocatalytic Hydrogen Evolution. Chemistry—A European Journal, 20, 2138-2144.
https://doi.org/10.1002/chem.201303366
[28]  Burdett, J.K., Hughbanks, T., Miller, G.J., et al. (1987) Structural-Electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K. Journal of the American Chemical Society, 109, 3639-3646.
https://doi.org/10.1021/ja00246a021
[29]  Duan, Y., Fu, N., Liu, Q., et al. (2012) Sn-Doped TiO2 Photoanode for Dye-Sensitized Solar Cells. Physical Chemistry C, 116, 8888-8893.
https://doi.org/10.1021/jp212517k
[30]  Zhang, S.T., Li, C.M., Yan, H., Wei, M., Evans, D.G. and Duan, X. (2014) Density Functional Theory Study on the Metal-Support Interaction between Ru Cluster and Anatase TiO2 (101) Surface. Physical Chemistry C, 118, 514-3522.
https://doi.org/10.1021/jp409627p
[31]  Chen, H.Y.T., Tosoni, S. and Pacchioni, G. (2015) Adsorption of Ruthenium Atoms and Clusters on Anatase TiO2 and Tetragonal ZrO2 (101) Surfaces: A Comparative DFT Study. Physical Chemistry C, 119, 10856-10868.
https://doi.org/10.1021/jp510468f
[32]  Zhou, Y., Muhich, C.L., Neltner, B.T., Weimer, A.W. and Musgrave, C.B. (2012) Growth of Pt Particles on the Anatase TiO2 (101) Surface. Physical Chemistry C, 116, 12114-12123.
https://doi.org/10.1021/jp302273m
[33]  Gao, G., Jiao, Y., Waclawik, E.R. and Du, A. (2016) Single Atom (Pd/Pt) Supported Ongraphitic Carbon Nitride as an Efficient Photocatalyst for Visible-Light Reduction of Carbon Dioxide. Journal of the American Chemical Society, 138, 6292-6297.
https://doi.org/10.1021/jacs.6b02692
[34]  Sathish, M., Viswanathan, B. and Viswanath, R.P. (2006) Alternate Synthetic Strategy for the Preparation of CdS Nanoparticles and Its Exploitation for Water Splitting. International Journal of Hydrogen Energy, 31, 891-898.
https://doi.org/10.1016/j.ijhydene.2005.08.002
[35]  Linsebigler, A.L., Lu, G. and Yates, J.T. (1995) Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95, 735-758.
https://doi.org/10.1021/cr00035a013
[36]  Deák, P., Kullgren, J., Aradi, B., Frauenheim, T. and Kavan, L. (2016) Water Splitting and the Band Edge Positions of TiO2. Electrochimica Acta, 199, 27-34.
https://doi.org/10.1016/j.electacta.2016.03.122
[37]  Selcuk, M.Z., Boroglu, M.S. and Boz, I. (2012) Hydrogen Production by Photocatalytic Water-Splitting Using Nitrogen and Metal Co-Doped TiO2 Powder Photocatalyst. Reaction Kinetics, Mechanisms, and Catalysis, 106, 313-324.
https://doi.org/10.1007/s11144-012-0434-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133