%0 Journal Article %T 稀土单原子钇(Y)吸附对锐钛矿TiO2薄膜光催化活性的影响
Influence of Rare Earth Single-Atom Yttrium (Y) Adsorption on the Photocatalytic Activity of TiO2 Thin Film %A 伊力哈尔?艾散 %A 甫尔开提?夏尔丁 %A 买买提热夏提?买买提 %A 王青 %J Material Sciences %P 1155-1164 %@ 2160-7621 %D 2021 %I Hans Publishing %R 10.12677/MS.2021.1111134 %X 本文采用基于密度泛函理论(DFT)的第一性原理计算方法,研究了稀土单原子钇(Y)吸附对锐钛矿薄膜TiO2光催化活性的影响。由于钇原子向锐钛矿TiO2 (101)表面的电荷转移,吸附表面的功函数明显小于纯表面的功函数,表明表面活性增强。钛原子的3d轨道作为杂质能级出现在导带底,变成浅能级,通过缩小带隙来增强光吸收率。当单钇原子被吸附时,表面Ti原子的势能接近于真空能级,显著促进了电子的转移,从而促进了氢的产生。在被激发的TiO2光催化剂中,光诱导电子可以通过表面钛原子转移到目标物种,意味着电子–空穴对能有效地分离而提高光催化活性。此外,由于钇原子的吸附,导带边缘的上移将提高锐钛矿TiO2的还原能力。本研究结果为单金属原子吸附提高光催化性能提供了新的思路。
The effect of single rare earth atom (Y) adsorption on the photocatalytic activity of anatase TiO2 thin film was studied by the first-principles calculation based on density functional theory (DFT). Due to the charge transfer of yttrium atom to anatase TiO2 (101) surface, the work function of the adsorbed surface is significantly smaller than that of the pure surface, indicating that the surface activity is enhanced. The 3d orbital of titanium atom appears as an impurity energy level at the bottom of the conduction band, becoming a shallow energy level and enhancing the optical absorption rate by narrowing the band gap. When the single yttrium atom is adsorbed, the potential energy of the surface Ti atom is close to the vacuum level, which significantly promotes electron transfer and thus hydrogen production. In the excited TiO2 photocatalyst, the photoinduced electrons can be transferred to the target species via the surface titanium atom, meaning that the electron-hole pair can be effectively separated to improve the photocatalytic activity. In addition, due to the adsorption of yttrium atom, the upward shift of the conduction band edge will improve the reduction ability of anatase TiO2. The results of this study provide a new idea for improving the photocatalytic performance of single metal atom adsorption. %K 单原子吸附,锐钛矿薄膜(101)表面,活性位点,杂质能级,光吸收率,光催化活性
Single-Atom Adsorption %K Anatase Thin Film (101) Surface %K Active Site %K Impurity Level %K Optical Absorption %K Photocatalytic Activity %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=46395