全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Bioprocess  2021 

外泌体在组织工程中的研究进展
The Research Progress of Exosomes in Tissue Engineering

DOI: 10.12677/BP.2021.114010, PP. 85-91

Keywords: 外泌体,组织工程,生物材料
Exosomes
, Tissue Engineering, Biomaterials

Full-Text   Cite this paper   Add to My Lib

Abstract:

从细胞释放的外泌体,以膜包围的细胞外囊泡的形式,传递蛋白质和核酸,在细胞间通讯中起着至关重要的作用。外泌体的治疗潜力几乎是无限的,特别是从各种组织细胞中收获的外泌体不会引起宿主自身免疫反应,使得外泌体在组织工程移植手术和移植物抗宿主疾病的治疗中,提供了希望。然而,在移植后,维持外泌体随时间的保留和稳定性是外泌体应用的主要挑战。将基于外泌体的递送与多种组织工程材料相结合,不仅可以将外泌体有效负载,而且能有效的将外泌体持久保留在组织缺损部位,满足外泌体高效的停留和持续释放,并为组织再生提供理想的微环境。开发外泌体与各种形式的组织工程支架为组合的无细胞系统,有望用作生物实体,潜在地促进新的生物功能支架的开发,为组织再生提供了有希望的策略。
Exosomes are extracellular vesicles surrounded by membrane released by nearly all cell types. It has been demonstrated that exosomes transfer proteins and nucleic acids via their cargo and play a critical role in intracellular communication. Exosomes are almost universal and exosomes harvested from all tissues and cells do not induce autoimmune responses, offering a promising therapeutic option in tissue engineering transplant surgery and the treatment of graft-versus-host disease. However, the main challenge for exosomes application is the maintenance of efficiency and stability of exosomes after transplantation in vivo
. The combination of exosomes delivery and tissue engineering based materials can not only carry exosomes, but also effectively retain exosomes in the defect sites of tissue and release for a long time, which provide an ideal microenvironment for tissue regeneration. The development of cell-free systems combining exosomes with various forms of tissue-engineered scaffolds is expected to be used as biological entities, promoting the development of new biofunctional scaffolds and providing promising strategies for tissue regeneration.

References

[1]  Sharma, P., Kumar, P., Sharma, R., Bhatt, V.D. and Dhot, P.S. (2019) Tissue Engineering; Current Status & Futuristic Scope. Journal of Medicine and Life, 12, 225-229.
https://doi.org/10.25122/jml-2019-0032
[2]  Bakhshandeh, B., Zarrintaj, P., Oftadeh, M.O., Keramati, F., Fouladiha, H., Sohrabi-Jahromi, S. and Ziraksaz, Z. (2017) Tissue Engineer-ing; Strategies, Tissues, and Biomaterials. Biotechnology & Genetic Engineering Reviews, 33, 144-172.
https://doi.org/10.1080/02648725.2018.1430464
[3]  Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977.
https://doi.org/10.1126/science.aau6977
[4]  Haraszti, R.A., Didiot, M.C., Sapp, E., Leszyk, J., Shaffer, S.A., Rockwell, H.E., Gao, F., Narain, N.R., DiFiglia, M., Kiebish, M.A, Aronin, N. and Khvorova, A. (2016) High-Resolution Proteomic and Lipidomic Analysis of Exosomes and Microvesicles from Different Cell Sources. Jour-nal of Extracellular Vesicles, 5, 32570.
https://doi.org/10.3402/jev.v5.32570
[5]  Xu, R., Greening, D.W., Zhu, H.J., Takahashi, N. and Simpson, R.J. (2016) Extracellular Vesicle Isolation and Characterization: Toward Clinical Application. The Journal of Clinical Investi-gation, 126, 1152-1162.
https://doi.org/10.1172/JCI81129
[6]  Thery, C., Zitvogel, L. and Amigorena, S. (2002) Exosomes: Composition, Biogenesis and Function. Nature Reviews. Immunology, 2, 569-579.
https://doi.org/10.1038/nri855
[7]  Colombo, M., Raposo, G. and Thery, C. (2014) Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extra-cellular Vesicles. Annual Review of Cell and Developmental Biology, 30, 255-289.
https://doi.org/10.1146/annurev-cellbio-101512-122326
[8]  Vlassov, A.V., Magdaleno, S., Setterquist, R. and Conrad, R. (2012) Exosomes: Current Knowledge of Their Composition, Biological Functions, and Diagnostic and Therapeutic Potentials. Biochimica et Biophysica Acta, 1820, 940-948.
https://doi.org/10.1016/j.bbagen.2012.03.017
[9]  Rider, M.A., Hurwitz, S.N. and Meckes, D.G. (2016) ExtraPEG: A Polyethylene Glycol-Based Method for Enrichment of Extracellular Vesicles. Scientific Reports, 6, Article No. 23978.
https://doi.org/10.1038/srep23978
[10]  Gurunathan, S., Kang, M.H., Jeyaraj, M., Qasim, M. and Kim, J.H. (2019) Review of the Isolation, Characterization, Biological Function, and Multifarious Therapeutic Approaches of Exosomes. Cells, 8, 307.
https://doi.org/10.3390/cells8040307
[11]  Azmi, A.S., Bao, B. and Sarkar, F.H. (2013) Exosomes in Cancer De-velopment, Metastasis, and Drug Resistance: A Comprehensive Review. Cancer and Metastasis Reviews, 32, 623-642.
https://doi.org/10.1007/s10555-013-9441-9
[12]  Liu, X.L., Yang, Y.L., Li, Y., Niu, X., Zhao, B.Z., Wang, Y., Bao, C.Y., Xie, Z.P., Lin, Q.N. and Zhu, L.Y. (2017) Integration of Stem Cell-Derived Exosomes with in Situ Hydrogel Glue as a Promising Tissue Patch for Articular Cartilage Regeneration. Nanoscale, 9, 4430-4438.
https://doi.org/10.1039/C7NR00352H
[13]  Li, W.Y., Liu, Y.S., Zhang, P., Tang, Y.M., Zhou, M., Jiang, W.R., Zhang, X., Wu, G. and Zhou, Y.S. (2018) Tissue-Engineered Bone Immobilized with Human Adipose Stem Cells-Derived Exosomes Promotes Bone Regeneration. ACS Applied Materials & Interfaces, 10, 5240-5254.
https://doi.org/10.1021/acsami.7b17620
[14]  Fan, L., Guan, P.F., Xiao, C.R., Wen, H.Q., Wang, Q.Y., Liu, C., Luo, Y.A., Ma, L.M., Tan, G.X., Yu, P., Zhou, L. and Ning, C.Y. (2021) Exosome-Functionalized Polyetherether-ketone-Based Implant with Immunomodulatory Property for Enhancing Osseointegration. Bioactive Materials, 6, 2754-2766.
https://doi.org/10.1016/j.bioactmat.2021.02.005
[15]  Shi, Q., Qian, Z.Y., Liu, D.H., Sun, J., Wang, X., Liu, H.C., Xu, J. and Guo, X.M. (2017) GMSC-Derived Exosomes Combined with a Chitosan/Silk Hydrogel Sponge Accelerates Wound Healing in a Diabetic Rat Skin Defect Model. Frontiers in Physiology, 8, 904.
https://doi.org/10.3389/fphys.2017.00904
[16]  Li, Q.J., Gong, S.Q., Yao, W.F., Yang, Z.T., Wang, R.J., Yu, Z.J. and Wei, M.J. (2021) Exosome Loaded Genipin Crosslinked Hydrogel Facilitates Full Thickness Cutaneous Wound Healing in Rat Animal Model. Drug Delivery, 28, 884-893.
https://doi.org/10.1080/10717544.2021.1912210
[17]  Zhang, K.Y., Zhao, X.N., Chen, X.N., Wei, Y.Z., Du, W., Wang, Y.B., Liu, L.A., Zhao, W.A., Han, Z.B., Kong, D.L., Zhao, Q., Guo, Z.K., Han, Z.C., Liu, N., Ma, F.X. and Li, Z.J. (2018) Enhanced Therapeutic Effects of Mesenchymal Stem Cell-Derived Exosomes with an Injectable Hydrogel for Hindlimb Ischemia Treatment. ACS Applied Materials & Interfaces, 10, 30081-30091.
https://doi.org/10.1021/acsami.8b08449
[18]  Han, C.S., Zhou, J., Liu, B., Liang, C., Pan, X.B., Zhang, Y., Zhang, Y.Q., Wang, Y.L., Shao, L.B., Zhu, B., Wang, J.J., Yin, Q., Yu, X.Y. and Li, Y.X. (2019) Delivery of miR-675 by Stem Cell-Derived Exosomes Encapsulated in Silk Fibroin Hydrogel Prevents Aging-Induced Vascular Dysfunction in Mouse Hindlimb. Materials Science and Engineering: C, 99, 322-332.
https://doi.org/10.1016/j.msec.2019.01.122
[19]  Liu, C.Y., Yin, G., Sun, Y.D., Lin, Y.F., Xie, Z., English, A.W., Li, Q.F. and Lin, H.D. (2020) Effect of Exosomes from Adipose-Derived Stem Cells on the Apoptosis of Schwann Cells in Peripheral Nerve Injury. CNS Neuroscience & Therapeutics, 26, 189-196.
https://doi.org/10.1111/cns.13187
[20]  Ching, R.C., Wiberg, M. and Kingham, P.J. (2018) Schwann Cell-Like Differentiated Adipose Stem Cells Promote Neurite Outgrowth via Secreted Exosomes and RNA Transfer. Stem Cell Research & Therapy, 9, 266.
https://doi.org/10.1186/s13287-018-1017-8
[21]  Li, L.M., Zhang, Y., Mu, J.F., Chen, J.C., Zhang, C.Y., Cao, H.C. and Gao, J.Q. (2020) Transplantation of Human Mesenchymal Stem-Cell-Derived Exosomes Immobilized in an Adhe-sive Hydrogel for Effective Treatment of Spinal Cord Injury. Nano Letters, 20, 4298-4305.
https://doi.org/10.1021/acs.nanolett.0c00929
[22]  Rao, F., Zhang, D.Y., Fang, T.J.Z., Lu, C.F., Wang, B., Ding, X., Wei, S., Zhang, Y.R., Pi, W., Xu, H.L., Wang, Y.H., Jiang, B.G. and Zhang, P.X. (2019) Exosomes from Human Gin-giva-Derived Mesenchymal Stem Cells Combined with Biodegradable Chitin Conduits Promote Rat Sciatic Nerve Re-generation. Stem Cells International, 2019, Article ID: 2546367.
https://doi.org/10.1155/2019/2546367
[23]  Yang, Z., Yang, Y., Xu, Y.C., Jiang, W.Q., Shao, Y., Xing, J.H., Chen, Y.B. and Han, Y. (2021) Biomimetic Nerve Guidance Conduit Containing Engineered Exosomes of Adipose-Derived Stem Cells Promotes Peripheral Nerve Regeneration. Stem Cell Research & Therapy, 12, 442.
https://doi.org/10.1186/s13287-021-02528-x
[24]  Liang, L., Shen, Y., Dong, Z.F. and Gu, X. (2021) Photoacoustic Image-Guided Corpus Cavernosum Intratunical Injection of Adipose Stem Cell-Derived Exosomes Loaded Polydopamine Thermosensitive Hydrogel for Erectile Dysfunction Treatment. Bioactive Materials.
https://doi.org/10.1016/j.bioactmat.2021.07.024

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133