全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Bioprocess  2021 

帕金森病的致病因素及治疗
Pathogenic Factors and Treatment of Parkinson’s Disease

DOI: 10.12677/BP.2021.114008, PP. 67-75

Keywords: 帕金森病,α-突触核蛋白,运动功能障碍,康复治疗
Parkinson’s Disease
, α-Synuclein, Motor Dysfunction, Rehabilitation Therapy

Full-Text   Cite this paper   Add to My Lib

Abstract:

帕金森病(Parkinson’s disease, PD),是继阿兹海默症之后的第二大神经退行性疾病。据统计,全球超过一半的帕金森病患者都是中国人,帕金森病已经成为继心血管疾病、肿瘤之后的我国中老年人的第三杀手。根据起源,该病主要分遗传性和特发性两种。帕金森病患者神经病理学特征常表现为大脑黑质区域多巴胺能神经元的缺失和特定神经元内α-突触核蛋白(α-syn)的沉积。帕金森病主要表现为一系列的运动功能障碍,如震颤、僵直、姿势和步态异常等。帕金森病的发病机理涉及多种因素,如线粒体功能障碍、氧化应激、神经炎症等,现在仍然未有定论,因此也未有药物可以完全的抑制疾病的进程和治愈疾病,现多用左旋多巴和多巴胺激动剂治疗PD,也会辅助一些物理康复治疗。所以,如何在多致病因素的情况下寻找到治疗的有效方法是未来研究中的大挑战,同时也是研究的热点。
Parkinson’s disease (PD) is the second largest neurodegenerative disease after Alzheimer’s disease. According to statistics, more than half of the patients with Parkinson’s disease in the world are Chinese. Parkinson’s disease has become the third killer of middle-aged and elderly people in China after cardiovascular diseases and tumors. According to the origin, the disease is mainly divided into hereditary and idiopathic. The neuropathological characteristics of patients with Parkinson’s disease are often manifested in the absence of dopaminergic neurons in the substantia nigra and α-Synuclein deposition in specific neurons. Parkinson’s disease is mainly characterized by a series of motor dysfunction, such as tremor, stiffness, abnormal posture and gait and so on. The pathogenesis of Parkinson’s disease involves many factors, such as mitochondrial dysfunction, oxidative stress, neuroinflammation, etc. There is still no final conclusion. Therefore, there is no drug that can completely inhibit the process of the disease and cure the disease. Now, levodopa and dopamine agonists are used to treat PD, and some physical rehabilitation treatments will also be assisted. Therefore, how to find an effective treatment in the case of multiple pathogenic factors is not only a great challenge in future research, but also a research hotspot.

References

[1]  Bloem, B.R., De Vries, N.M. and Ebersbach, G. (2015) Nonpharmacological Treatments for Patients with Parkinson’s Disease. Movement Disorders, 30, 1504-1520.
https://doi.org/10.1002/mds.26363
[2]  Keus, S.H., Munneke, M., Nijkrake, M.J., Kwakkel, G. and Bloem, B.R. (2009) Physical Therapy in Parkinson’s Disease: Evolution and Future Challenges. Movement Disorders, 24, 1-14.
https://doi.org/10.1002/mds.22141
[3]  Schrag, A., Jahanshahi, M. and Quinn, N. (2000) What Contributes to Quality of Life in Patients with Parkinson’s Disease? Journal of Neurology Neurosurgery & Psychiatry, 69, 308-312.
https://doi.org/10.1136/jnnp.69.3.308
[4]  Pringsheim, T., Jette, N., Frolkis, A. and Steeves, T.D. (2014) The Prevalence of Parkinson’s Disease: A Systematic Re-view and Meta-Analysis. Movement Disorders, 29, 1583-1590.
https://doi.org/10.1002/mds.25945
[5]  Parkinson, J. (2002) An Essay on the Shaking Palsy. Journal of Neuropsychiatry and Clinical Neurosciences, 14, 223-236.
https://doi.org/10.1176/jnp.14.2.223
[6]  Allegri, R.F., Bartoloni, L. and Sica, R.E. (2016) History of the Depart-ment of Neurology at the University of Buenos Aires (1887-2007). Vertex, 27, 306-318.
[7]  Baldereschi, M., Di, C.A., Rocca, W.A., Vanni, P., Maggi, S., Perissinotto, E., et al. (2000) Parkinson’s Disease and Parkinsonism in a Longitudi-nal Study: Two-Fold Higher Incidence in Men. Neurology, 55, 1358-1363.
https://doi.org/10.1212/WNL.55.9.1358
[8]  Jankovic, J. (2008) Parkinson’s Disease: Clinical Features and Diag-nosis. Journal of Neurology Neurosurgery & Psychiatry, 79, 368-376.
https://doi.org/10.1136/jnnp.2007.131045
[9]  Halliday, G.M., Holton, J.L., Revesz, T. and Dickson, D.W. (2011) Neuropathology Underlying Clinical Variability in Patients with Synucleinopathies. Acta Neuropathologica, 122, 187-204.
https://doi.org/10.1007/s00401-011-0852-9
[10]  Damier, P., Hirsch, E.C., Agid, Y. and Graybiel, A.M. (1999) The Substantia Nigra of the Human Brain. II. Patterns of Loss of Dopamine-Containing Neurons in Parkinson’s Disease. Brain, 122, 1437-1448.
https://doi.org/10.1093/brain/122.8.1437
[11]  Dijkstra, A.A., Voorn, P., Berendse, H.W., Groenewegen, H.J., Rozemuller, A.J. and van de Berg, W.D. (2014) Stage-Dependent Nigral Neuronal Loss in Incidental Lewy Body and Parkinson’s Disease. Movement Disorders, 29, 1244-1251.
https://doi.org/10.1002/mds.25952
[12]  Braak, H., Del Tredici, K., Rüb, U., de Vos, R.A.I., Jansen Steur, E.N.H. and Braak, E. (2003) Staging of Brain Pathology Related to Sporadic Parkinson’s Disease. Neurobiology of Aging, 24, 197-211.
https://doi.org/10.1016/S0197-4580(02)00065-9
[13]  Iacono, D., Geraci-Erck, M., Rabin, M.L., Adler, C.H., Ser-rano, G., Beach, T.G., et al. (2015) Parkinson Disease and Incidental Lewy Body Disease: Just a Question of Time? Neurology, 85, 1670-169.
https://doi.org/10.1212/WNL.0000000000002102
[14]  Chaudhuri, K.R. and Schapira, A.H. (2009) Non-Motor Symptoms of Parkinson’s Disease: Dopaminergic Pathophysiology and Treatment. Lancet Neurology, 8, 464-474.
https://doi.org/10.1016/S1474-4422(09)70068-7
[15]  PD MED Collaborative Group (2014) Long-Term Effec-tiveness of Dopamine Agonists and Monoamine Oxidase B Inhibitors Compared with Levodopa as Initial Treatment for Parkinson’s Disease (PD MED): A Large, Open-Label, Pragmatic Randomised Trial. Lancet, 384, 1196-1205.
https://doi.org/10.1016/S0140-6736(14)60683-8
[16]  Mahlknecht, P., Gasperi, A., Willeit, P., Kiechl, S., Stockner, H., Willeit, J., et al. (2016) Prodromal Parkinson’s Disease as Defined per MDS Research Criteria in the General Elderly Community. Movement Disorders, 31, 1405-1408.
https://doi.org/10.1002/mds.26674
[17]  Xu, Q., Park, Y., Huang, X., Hollenbeck, A., Blair, A., Schatzkin, A., et al. (2010) Physical Activities and Future Risk of Parkinson Disease. Neurology, 75, 341-348.
https://doi.org/10.1212/WNL.0b013e3181ea1597
[18]  Yang, F., Trolle Lagerros, Y., Bellocco, R., Adami, H.-O., Fang, F., Pedersen, N.L., et al. (2014) Physical Activity and Risk of Parkinson’s Disease in the Swedish National March Cohort. Brain, 138, 269-275.
https://doi.org/10.1093/brain/awu323
[19]  Van Den Eeden, S.K., Tanner, C.M., Bernstein, A.L., Fross, R.D., Leimpeter, A., Bloch, D.A., et al. (2003) Incidence of Parkinson’s Disease: Variation by Age, Gender, and Race/Ethnicity. American Journal of Epidemiology, 157, 1015-1022.
https://doi.org/10.1093/aje/kwg068
[20]  Pinter, B., Diemzangerl, A., Wenning, G.K., Scherfler, C., Oberaigner, W., Seppi, K., et al. (2015) Mortality in Parkinson’s Disease: A 38-Year Follow-Up Study. Movement Disorders, 30, 819-825.
https://doi.org/10.1002/mds.26060
[21]  Gjerstad, M.D., Wentzel-Larsen, T., Aarsland, D. and Larsen, J.P. (2007) Insomnia in Parkinson’s Disease: Frequency and Progression over Time. Journal of Neurology, Neurosur-gery, and Psychiatry, 78, 476-479.
https://doi.org/10.1136/jnnp.2006.100370
[22]  Morens, D.M., Davis, J.W., Grandinetti, A., Ross, G.W., Popper, J.S. and White, L.R. (1996) Epidemiologic Observations on Parkinson’s Disease Incidence and Mortality in a Prospec-tive Study of Middle-Aged Men. Neurology, 46, 1044-1050.
https://doi.org/10.1212/WNL.46.4.1044
[23]  Payami, H. and Zareparsi, S. (1973) Epidemiology of Parkinson’s Disease. Lancet Neurology, 66, 202-203.
[24]  Xiong, N., Long, X., Xiong, J., Jia, M., Chen, C., Huang, J., et al. (2012) Mitochondrial Complex I Inhibitor Rotenone-Induced Toxicity and Its Potential Mechanisms in Parkinson’s Disease Models. Critical Reviews in Toxicology, 42, 613-632.
https://doi.org/10.3109/10408444.2012.680431
[25]  Ascherio, A. and Schwarzschild, M.A. (2016) The Epidemi-ology of Parkinson’s Disease: Risk Factors and Prevention. Lancet Neurology, 15, 1257-1272.
https://doi.org/10.1016/S1474-4422(16)30230-7
[26]  Nalls, M.A., Pankratz, N., Lill, C.M., Do, C.B., Hernandez, D.G., Saad, M., et al. (2014) Large-Scale Meta-Analysis of Genome-Wide Association Data Identifies Six New Risk Loci for Parkinson’s Disease. Nature Genetics, 46, 989-993.
https://doi.org/10.1038/ng.3043
[27]  马敬红, 陈彪. 帕金森病患者发病年龄与临床异质性的回顾性分析[J]. 中国临床康复, 2005, 9(17): 10-12.
[28]  Vekrellis, K., Xilouri, M., Emmanouilidou, E., Rideout, H.J. and Stefanis, L. (2011) Pathological Roles of α-Synuclein in Neurological Disorders. Lancet Neurology, 10, 1015-1025.
https://doi.org/10.1016/S1474-4422(11)70213-7
[29]  Xilouri, M., Brekk, O.R. and Stefanis, L. (2013) Al-pha-Synuclein and Protein Degradation Systems: a Reciprocal Relationship. Molecular Neurobiology, 47, 537-551.
https://doi.org/10.1007/s12035-012-8341-2
[30]  Chu, Y. and Kordower, J.H. (2007) Age-Associated Increases of α-Synuclein in Monkeys and Humans Are Associated with Nigrostriatal Dopamine Depletion: Is This the Target for Par-kinson’s Disease? Neurobiology of Disease, 25, 134-149.
https://doi.org/10.1016/j.nbd.2006.08.021
[31]  Buneeva, O.A. and Medvedev, A.E. (2011) Mitochondrial Dys-function in Parkinson’s Disease. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 5, 313-336.
https://doi.org/10.1134/S1990750811040032
[32]  Devi, L., Raghavendran, V., Prabhu, B.M., Avadhani, N.G. and Anandatheerthavarada, H.K. (2008) Mitochondrial Import and Accumulation of α-Synuclein Impair Complex I in Human Dopaminergic Neuronal Cultures and Parkinson Disease Brain. Journal of Biological Chemistry, 283, 9089-9100.
https://doi.org/10.1074/jbc.M710012200
[33]  Telford, J.E., Kilbride, S.M. and Davey, G.P. (2009) Complex I Is Rate-Limiting for Oxygen Consumption in the Nerve Terminal. Journal of Biological Chemistry, 284, 9109-9114.
https://doi.org/10.1074/jbc.M809101200
[34]  Dias, V., Junn, E. and Mouradian, M.M. (2013) The Role of Oxida-tive Stress in Parkinson’s Disease. Journal of Parkinson’s Disease, 3, 461-491.
https://doi.org/10.3233/JPD-130230
[35]  Di, N.M., Masciullo, M., Verrigni, D., Petrillo, S., Modoni, A., Rizzo, V., et al. (2016) DJ-1 Modulates Mitochondrial Response to Oxidative Stress: Clues from a Novel Diagnosis of PARK7. Clinical Genetics, 92, 18-25.
https://doi.org/10.1111/cge.12841
[36]  Guzman, J.N., Sanchez-Padilla, J., Wokosin, D., Kondapalli, J., Ilijic, E., Schumacker, P.T., et al. (2010) Oxidant Stress Evoked by Pacemaking in Dopaminergic Neurons Is Attenuated by DJ-1. Nature, 468, 696-700.
https://doi.org/10.1038/nature09536
[37]  Surmeier, D.J., Schumacker, P.T., Guzman, J.D., Ilijic, E., Yang, B. and Zampese, E. (2016) Calcium and Parkinson’s Disease. Biochemical & Biophysical Research Communications, 483, 1013-1019.
https://doi.org/10.1016/j.bbrc.2016.08.168
[38]  Moehle, M.S. and West, A.B. (2015) M1 and M2 Immune Acti-vation in Parkinson’s Disease: Foe and Ally? Neuroscience, 302, 59-73.
https://doi.org/10.1016/j.neuroscience.2014.11.018
[39]  Ransohoff, R.M. (2016) How Neuroinflammation Con-tributes to Neurodegeneration. Science, 353, 777-783.
https://doi.org/10.1126/science.aag2590
[40]  Ma, B., Xu, L., Pan, X., Sun, L., Ding, J., Xie, C., et al. (2015) LRRK2 Modulates Microglial Activity through Regulation of Chemokine (C–X3–C) Receptor 1-Mediated Signaling Pathways. Human Molecular Genetics, 25, 3515-3523.
https://doi.org/10.1093/hmg/ddw194
[41]  Hirsch, E.C. and Hunot, S. (2009) Neuroinflammation in Parkinson’s Disease: A Target for Neuroprotection? Lancet Neurology, 8, 382-397.
https://doi.org/10.1016/S1474-4422(09)70062-6
[42]  Gao, H.M., Kotzbauer, P.T., Uryu, K., Leight, S., Trojan-owski, J.Q. and Lee, V.M.-Y. (2008) Neuroinflammation and Oxidation/Nitration of α-Synuclein Linked to Dopaminer-gic Neurodegeneration. Journal of Neuroscience, 28, 7687-7698.
https://doi.org/10.1523/JNEUROSCI.0143-07.2008
[43]  George, S. and Brundin, P. (2015) Immunotherapy in Parkinson’s Disease: Micromanaging α-Synuclein Aggregation. Journal of Parkinson’s Disease, 5, 413-424.
https://doi.org/10.3233/JPD-150630
[44]  Oksanen, M., Lehtonen, S., Jaronen, M., Goldsteins, G., H?m?l?inen, R.H. and Koistinaho, J. (2019) Astrocyte Alterations in Neurodegenerative Pathologies and Their Modeling in Human Induced Pluripotent Stem Cell Platforms. Cellular and Molecular Life Sciences, 76, 2739-2760.
https://doi.org/10.1007/s00018-019-03111-7
[45]  Rocha, N.P., De Miranda, A.S. and Teixeira, A.L. (2015) In-sights into Neuroinflammation in Parkinson’s Disease: From Biomarkers to Anti-Inflammatory Based Therapies. BioMed Research International, 2015, Article ID: 628192.
https://doi.org/10.1155/2015/628192
[46]  Tang, Y. and Le, W. (2016) Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Molecular Neurobiology, 53, 1181-1194.
https://doi.org/10.1007/s12035-014-9070-5
[47]  Rojanathammanee, L., Murphy, E.J. and Combs, C.K. (2011) Expression of Mutant α-Synuclein Modulates Microglial Phenotype in Vitro. Journal of Neuroinflammation, 8, Article No. 44.
https://doi.org/10.1186/1742-2094-8-44
[48]  Lewitt, P.A. and Fahn, S. (2016) Levodopa Therapy for Par-kinson Disease: A Look Backward and Forward. Neurology, 86, S3-S12.
https://doi.org/10.1212/WNL.0000000000002509
[49]  Cenci, M.A. (2014) Presynaptic Mechanisms of l-DOPA-Induced Dyskinesia: The Findings, the Debate, and the Therapeutic Implications. Frontiers in Neurology, 5, Ar-ticle No. 242.
https://doi.org/10.3389/fneur.2014.00242
[50]  Ferreira, J.J., Lees, A., Rocha, J.F., Poewe, W., Rascol, O., Soares-da-Silva, P., et al. (2016) Opicapone as an Adjunct to Levodopa in Patients with Parkinson’s Disease and End-of-Dose Motor Fluctuations: A Randomised, Double-Blind, Controlled Trial. Lancet Neurology, 15, 154-165.
https://doi.org/10.1016/S1474-4422(15)00336-1
[51]  Schapira, A.H. (2011) Monoamine Oxidase B Inhibitors for the Treatment of Parkinson’s Disease: A Review of Symptomatic and Potential Disease-Modifying Effects. CNS Drugs, 25, 1061-1071.
https://doi.org/10.2165/11596310-000000000-00000
[52]  Birkmayer, W., Riederer, P., Ambrozi, L. and Youdim, M.B.H. (1977) Implications of Combined Treatment with ‘Madopar’ and L-Deprenil in Parkinson’s Disease: A Long-Term Study. Lancet, 1, 439-443.
https://doi.org/10.1016/S0140-6736(77)91940-7
[53]  Connolly, B.S. and Lang, A.E. (2014) Pharmacological Treatment of Parkinson Disease: A Review. JAMA, 311, 1670-1683.
https://doi.org/10.1001/jama.2014.3654
[54]  Jankovic, J. and Poewe, W. (2012) Therapies in Parkinson’s Disease. Current Opinion in Neurology, 25, 433-447.
https://doi.org/10.1097/WCO.0b013e3283542fc2
[55]  Limousin, P., Pollak, P., Benazzouz, A., Hoffmann, D., Le Bas, J.-F., Perret, J.E., et al. (1995) Effect on Parkinsonian Signs and Symptoms of Bilateral Subthalamic Nucleus Stim-ulation. Lancet, 345, 91-95.
https://doi.org/10.1016/S0140-6736(95)90062-4
[56]  Bronstein, J.M., Tagliati, M., Alterman, R.L., Lozano, A.M., Volkmann, J., Stefani, A., et al. (2011) Deep Brain Stimulation for Parkinson Disease: An Expert Consensus and Re-view of Key Issues. Archives of Neurology, 68, 165.
https://doi.org/10.1001/archneurol.2010.260
[57]  Voges, J., Hilker, R.B., Tzel, K., Kiening, K.L., Kloss, M., Kup-sch, A., et al. (2007) Thirty days Complication Rate Following Surgery Performed for Deep-Brain-Stimulation. Move-ment Disorders, 22, 1486-1489.
https://doi.org/10.1002/mds.21481
[58]  Li, W., Chen, S. and Li, J.Y. (2015) Human Induced Pluripotent Stem Cells in Parkinson’s Disease: A Novel Cell Source of Cell Therapy and Disease Modeling. Progress in Neurobiology, 134, 161-177.
https://doi.org/10.1016/j.pneurobio.2015.09.009
[59]  Chen, Z. (2015) Cell Therapy for Parkinson’s Disease: New Hope from Reprogramming Technologies. Aging & Disease, 6, 499-503.
https://doi.org/10.14336/AD.2014.1201
[60]  Kim, D., Kim, C.H., Moon, J.I., Chung, Y.G., Chang, M.Y., Han, B.S., et al. (2009) Generation of Human Induced Pluripotent Stem Cells by Direct Delivery of Reprogramming Proteins. Cell Stem Cell, 4, 472-476.
https://doi.org/10.1016/j.stem.2009.05.005
[61]  Kirkeby, A., Grealish, S., Wolf, D.A., Nelander, J., Wood, J., Lundblad, M., et al. (2012) Generation of Regionally Specified Neural Progenitors and Functional Neurons from Human Embryonic Stem Cells under Defined Conditions. Cell Reports, 1, 703-714.
https://doi.org/10.1016/j.celrep.2012.04.009
[62]  de Lau, L.M. and Breteler, M.M. (2006) Epidemiology of Parkinson Disease. Lancet Neurology, 5, 525-535.
https://doi.org/10.1016/s1474-4422(06)70471-9
[63]  Barker, R.A., Barrett, J., Mason, S.L. and Bj?rklund, A. (2013) Fetal Dopaminergic Transplantation Trials and the Future of Neural Grafting in Parkinson’s Disease. Lancet Neurology, 12, 84-91.
https://doi.org/10.1016/S1474-4422(12)70295-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133