全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Low Density Linear Polyethylene Reinforced with Alkali and MAPE Treated Fibers from Coffee Pulp

DOI: 10.4236/ojcm.2021.114008, PP. 94-110

Keywords: Fiber from Coffee Fiber Hull, Linear Low Density Polyethylene, Composite, MAPE

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work fibers derived from coffee, hulls have been incorporated into Linear Low Density Polyethylene (LLDPE). The influence of the filler content on the thermal and physicomechanical properties of the composites obtained was assessed. The results showed that the incorporation of fibers was able to improve the thermostability of LLDPE/Coffee hulls fibers; comparing the treated fiber composite with untreated fiber composites, the chemical treatment reduces by 58.3% the water absorption, while increasing the elongation and tensile strength by about 48% and 17% respectively. Moreover, due to better interfacial interaction induced by MAPE, the corresponding composite exhibited better properties compared to the untreated fiber composite. Results are indicative of the fact that both mercerization and MAPE (coupling agent) have significant positive effects on the fiber-matrix interaction in terms of adhesion, wetting and dispersion, this treatment produced a better fiber distribution and consequently a more uniform composite morphology without voids and gaps between the fibers and the matrix, allowing the possibility to use higher fiber contents (up to 30% wt.) with acceptable mechanical properties.

References

[1]  Carbonell-Verdú, A., García-García, D., Jordá, A., Samper, M.D. and Balart, R. (2015) Development of Slate Fiber Reinforced High Density Polyethylene Composites for Injection Molding. Composites Part B: Engineering, 69, 460-466.
https://doi.org/10.1016/j.compositesb.2014.10.026
[2]  Dominici, F., García, D.G., Fombuena, V., Luzi, F., Puglia, D., Torre, L. and Balart, R. (2019) Bio-Polyethylene-Based Composites Reinforced with Alkali and Palmitoyl Chloride-Treated Coffee Silver Skin. Molecules, 24, 3113.
https://doi.org/10.3390/molecules24173113
[3]  Zhang, H. (2014) Effect of a Novel Coupling Agent, Alkyl Ketene Dimer, on the Mechanical Properties of Wood-Plastic Composites. Materials & Design, 59, 130-134.
https://doi.org/10.1016/j.matdes.2014.02.048
[4]  Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R. and Garcia-Sanoguera, D. (2016) Development and Characterization of Green Composites from Bio-Based Polyethylene and Peanut Shell. Journal of Applied Polymer Science, 133, 1-12.
https://doi.org/10.1002/app.43940
[5]  Das, O., Sarmah, A.K. and Bhattacharyya, D. (2015) A Sustainable and Resilient Approach through Biochar Addition in Wood Polymer Composites. Science of the Total Environment, 512, 326-336.
https://doi.org/10.1016/j.scitotenv.2015.01.063
[6]  Bayer, J., Granda, L.A., Méndez, J.A., Pèlach, M.A., Vilaseca, F. and Mutijé, P. (2017) Cellulose Polymer Composites (WPC). In: Deans, M., Ed., Advanced High Strength Natural Fibre Composites in Construction, Elsevier, Berkeley, 115-139.
https://doi.org/10.1016/B978-0-08-100411-1.00005-4
[7]  Spear, M., Eder, A. and Carus, M. (2015) Wood Polymer Composites. In: Ansell, M., Ed., Wood Composites, Elsevier, Berkeley, 195-249.
https://doi.org/10.1016/B978-1-78242-454-3.00010-X
[8]  Saba, N., Paridah, M. and Jawaid, M. (2015) Mechanical Properties of Kenaf Fibre Reinforced Polymer Composite: A Review. Construction and Building Materials, 76, 87-96.
https://doi.org/10.1016/j.conbuildmat.2014.11.043
[9]  Quiles-Carrillo, L., Montanes, N., Garcia-Garcia., D., Carbonell-Verdu, A., Balart, R. and Torres-Giner, S. (2018) Effect of Different Compatibilizers on Injection-Molded Green Composite Pieces Based on Polylactide Filled with Almond Shell Flour. Composites Part B: Engineering, 147, 76-85.
https://doi.org/10.1016/j.compositesb.2018.04.017
[10]  Chan, C.M., Vandi, L.J., Pratt, S., Halley, P., Richardson, D., Werker, A. and Laycock, B. (2018) Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/ Wood Flour Composites: Effect of Interface Modifiers. Journal of Applied Polymer Science, 135, 46828.
https://doi.org/10.1002/app.46828
[11]  Echeverria, M.C. and Nuti, M. (2017) Valorization of the Residues of Coffee Agro-Industry: Perspectives and Limitations M.C. The Open Waste Management Journal, 10, 13-22.
https://doi.org/10.2174/1876400201710010013
[12]  Hahladakis, J.N., Velis, C.A., Weber, R., Iacovidou, E. and Purnell, P. (2018) An Overview of Chemical Additives Present in Plastics: Migration, Release, Fate and Environmental Impact during Their Use, Disposal and Recycling. Journal of Hazardous Materials, 344, 179-199.
https://doi.org/10.1016/j.jhazmat.2017.10.014
[13]  Bachmann, N., Deront, M., Fruteau, H., Holliger, C., Membrez, Y. and Wellinger, A. (2011) Optimisation des tests standardisés de digestibilité dans des réacteurs batch. Office fédéral de l’énergie OFEN Programme de recherche énergétique, Berne, Laboratoire de Biotechnologie Environnemental (LBE), 1015 Lausanne.
[14]  Wolff, J.P. (1968) Méthodes d’analyse des corps gras. Azoulay, Paris.
[15]  Monties, B. (1984) Dosage de la lignine insoluble en milieu acide: Influence du préraitement par hydrolyse acide sur la lignine Klason de bois et de pailleAgronomie. EDP Sciences, 4, 387-392.
https://doi.org/10.1051/agro:19840410
[16]  Ernesto de la Torre, C. (2015) Préparation de charbon actif à partir de coques de noix de palmier à huile pour la récupération d’or et le traitement d’effluents cyanurés. Thèse, Université Catholique de Louvain, 350 p.
[17]  Dias, O.A.T., Negrão, D.R., Silva, R.C., Funari, C.S., Cesarino, I. and Leao, A.L. (2016) Studies of Lignin as Reinforcement for Plastics Composites. Molecular Crystals and Liquid Crystals, 628, 72-78.
https://doi.org/10.1080/15421406.2015.1137677
[18]  ASTM-C373 (1999) American Standard and Testing Materials, C373-88 (ASTM). Standard Test Method for Water Absorption, Bulk Density, Apparent, Porosity, and Apparent Specific Gravity of Fired Whiteware Products.
[19]  Manimaran, P., Kumar, C., Bharanirajan, R. and Premnauth, I. (2016) Investigations on Mechanical Properties of Al 8011 Reinforced with Micro B4C/Red Mud by Stir Casting Method. Materials Science.
[20]  Djomi, R., Meva’a, L.J.R., Nganhou, J., Mbobda, G., Njom, A.E., Bampel, Y.D.M. and Tchinda, J.-B.S. (2018) Physicochemical and Thermal Characterization of Dura Palm Kernel Powder as a Load for Polymers: Case of Polyvinyl Chloride. Journal of Materials Science and Chemical Engineering, 6, 1-18.
https://doi.org/10.4236/msce.2018.66001
[21]  Samomssa, I., Nono, Y.J., Tsamo, C., Dinica, M.R. and Kamga, R. (2019) Influence of Physico-Chemical Parameters on Fuel Briquettes Properties Formulated with Mixture of Biomasses. Journal of Environmental Science and Pollution Research, 5, 338-341.
https://doi.org/10.30799/jespr.165.19050202
[22]  Bai, Y.Y., Xiao, L.P., Shi, Z.J. and Sun, R.C. (2013) Structural Variation of Bamboo Lignin before and after Ethanol Organosolv Pretreatment. International Journal of Molecular Sciences, 14, 21394-21413.
https://doi.org/10.3390/ijms141121394
[23]  Balakrishnan, P., John, M.J., Pothen, L., Sreekala, M.S. and Thomas, S. (2016) Natural Fibre and Polymer Matrix Composites and Their Applications in Aerospace Engineering. In: Advanced Composite Materials for Aerospace Engineering, Woodhead Publishing, Cambridge, 365-383.
https://doi.org/10.1016/B978-0-08-100037-3.00012-2
[24]  Mohanty, S., Verma, S.K. and Nayak, S.K. (2006) Dynamic Mechanical and Thermal Properties of MAPE Treated Jute/HDPE Composites. Composites Science and Technology, 66, 538-547.
https://doi.org/10.1016/j.compscitech.2005.06.014
[25]  Jayaraman, K., Lin, R., Bose, D., et al. (2007) Natural Fibre-Reinforced Thermoplastics Processed by Rotational Moulding. Advanced Materials Research, 29-30, 307.
https://doi.org/10.4028/www.scientific.net/AMR.29-30.307
[26]  Joseph, K., Mattoso, L.H.C., Toledo, R.D., et al. (2000) Natural Fiber Reinforced Thermoplastic Composites. In: Frollini, E., Leao, A.L. and Mattoso, L.H.C., Eds., Natural Polymers and Agrofibers Composites, Embrapa, San Carlos, Chapter 4, 159-201.
[27]  Cisneros-López, E.O., González-López, M.E., Pérez-Fonseca, A.A., González-Núñez, R., Rodrigue, D. and Robledo-Ortíz, J.R. (2016) Effect of Fiber Content and Surface Treatment on the Mechanical Properties of Natural Fiber Composites Produced by Rotomolding. Composite Interfaces, 24, 35-53.
https://doi.org/10.1080/09276440.2016.1184556

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133