全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基因编辑技术在作物育种中研究及应用
Research Progress and Application of Gene Editing Technology in Crop Breeding

DOI: 10.12677/BR.2021.105088, PP. 701-709

Keywords: 基因编辑,CRISPR/Cas9,作物育种
Gene Editing
, CRISPR-Cas9, Crops Breeding

Full-Text   Cite this paper   Add to My Lib

Abstract:

介绍基因编辑技术种类、技术原理,CRISPR/Cas9技术是基因编辑最为主流的工具,重点介绍CRISPR/Cas9技术原理,总结前人利用CRISPR/Cas9技术在作物育种上的应用,主要应用在提高作物产量,改善作物品质,提升作物抗逆性。本文还介绍了CRISPR/Cas9技术存在的问题及前景展望。本文为我国作物育种开展基因编辑研究提供理论参考。
The research introduces the types and principle of gene editing technology, CRISPR/Cas9 tech-nology is the most mainstream tool for gene editing, this paper mainly introduces the principle of CRISPR/Cas9 technology and summarizes the application of CRISPR/Cas9 technology in crop breeding by predecessors, which is mainly used to increase crop yield, improve crop quality and enhance crop resistance. This paper also introduces the problems and prospects of CRISPR/Cas9 technology. This paper provides a theoretical reference for gene editing research in crop breeding of China.

References

[1]  周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 47(3): 427-437.
[2]  谢科, 饶力群, 李红伟, 安学丽, 方才臣, 万向元. 基因组编辑技术在植物中的研究进展与应用前景[J]. 中国生物工程杂志, 2013, 33(6): 99-104.
[3]  Chang, H.A., Ramya, M., An, H.R., Park, P.M. and Jang, S. (2020) Progress and Challenges in the Improvement of Ornamental Plants by Genome Editing. Plants, 9, Article No. 687.
https://doi.org/10.3390/plants9060687
[4]  张庆晓, 曹少先, 苏磊, 王慧利, 孟春花, 王锋. 锌指核酸酶技术在基因组定点修饰中的应用[J]. 畜牧与兽医, 2013, 45(1): 96-100.
[5]  王琪, 张浩, 王博文, 雷秀娟, 王英平. 基因编辑技术在人参中的应用展望[J].特产研究, 2020, 42(3): 72-76 +85.
[6]  Osakabe, K., Osakabe, Y. and Toki, S. (2010) Site-Directed Mutagenesis in Arabidopsis Using Custom-Designed Zinc Finger Nucleases. Proceedings of the National Academy of Sciences of the United States of America, 107, 12034-12039.
https://doi.org/10.1073/pnas.1000234107
[7]  Petolino, J.F., Worden, A., Curlee, K., Connell, J., Strange Moynahan, T.L., Larsen, C., et al. (2010) Zinc Finger Nuclease-Mediated Transgene Deletion. Plant Molecular Biology, 73, 617-628.
https://doi.org/10.1007/s11103-010-9641-4
[8]  Shukla, V.K., Doyon, Y., Miller, J.C., Dekelver, R.C., Moehle, E.A., Worden, S.E., et al. (2009) Precise Genome Modification in the Crop Species Zea Mays Using Zinc-Finger Nucleases. Nature, 459, 437-441.
https://doi.org/10.1038/nature07992
[9]  Hsu, P. and Feng, Z. (2012) Dissecting Neural Function Using Tar-geted Genome Engineering Technologies. ACS Chemical Neuroscience, 3, 603-610.
https://doi.org/10.1021/cn300089k
[10]  Ahmar, S., Saeed, S., Khan, M.H.U., Ullah Khan, S., Mora-Poblete, F., Kamran, M., et al. (2020) A Revolution toward Gene-Editing Technology and Its Application to Crop Improvement. International Journal of Molecular Sciences, 21, Article No. 5665.
https://doi.org/10.3390/ijms21165665
[11]  Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., et al. (2009) Breaking the Code of DNA Binding Specificity of Tal-Type III Effectors. Science, 326, 1509-1512.
https://doi.org/10.1126/science.1178811
[12]  Li, T., Liu, B., Spalding, M.H., Weeks, D.P. and Yang, B. (2012) High-Efficiency Talen-Based Gene Editing Produces Disease-Resistant Rice. Nature Biotechnology, 30, 390-392.
https://doi.org/10.1038/nbt.2199
[13]  Kopischke, S., Schü?ler, E., Althoff, F. and Zachgo, S. (2017) Ta-len-Mediated Genome-Editing Approaches in the Liverwort Marchantia Polymorpha Yield High Efficiencies for Targeted Mutagenesis. Plant Methods, 13, Article No. 20.
https://doi.org/10.1186/s13007-017-0167-5
[14]  Gupta, R.M. and Musunuru, K. (2014) Expanding the Genetic Editing Tool Kit: ZFNs, TALENs, and CRISPR-Cas9. The Journal of Clinical Investigation, 124, 4154-4161.
https://doi.org/10.1172/JCI72992
[15]  Ahmad, S., Wei, X., Sheng, Z., Hu, P. and Tang, S. (2020) CRISPR/Cas9 for Development of Disease Resistance in Plants: Recent Progress, Limitations and Future Prospects. Briefings in Functional Genomics, 19, 26-39.
https://doi.org/10.1093/bfgp/elz041
[16]  Zafar, S.A., Zaidi, S.S., Gaba, Y., Singla-Pareek, S.L., Dhankher, O.P., Li, X., Mansoor, S. and Pareek, A. (2020) Engineering Abiotic Stress Tolerance via CRISPR/ Cas-Mediated Genome Editing. Journal of Experimental Botany, 71, 470-479.
https://doi.org/10.1093/jxb/erz476
[17]  Kim, H. and Kim, J.S. (2014) A Guide to Genome Engineering with Programmable Nucleases. Nature Reviews Genetics, 15, 321-334.
https://doi.org/10.1038/nrg3686
[18]  Vats, S., Kumawat, S., Kumar, V., Patil, G.B., Joshi, T., Sonah, H., Sharma, T.R. and Deshmukh, R. (2019) Genome Editing in Plants: Exploration of Technological Advancements and Challenges. Cells, 8, Article No. 1386.
https://doi.org/10.3390/cells8111386
[19]  Woo, J.W., Kim, J., Kwon, S.I., Corvalán, C., Cho, S.W., Kim, H., Kim, S.G., Kim, S.T., Choe, S. and Kim, J.S. (2015) DNA-Free Genome Editing in Plants with Preassembled CRISPR-Cas9 Ribonucleoproteins. Nature biotechnology, 33, 1162-1164.
https://doi.org/10.1038/nbt.3389
[20]  Manghwar, H., Lindsey, K., Zhang, X. and Jin, S. (2019) CRISPR/Cas System: Recent Advances and Future Prospects for Genome Editing. Trends in Plant Science, 24, 1102-1125.
https://doi.org/10.1016/j.tplants.2019.09.006
[21]  周想春. 基于基因编辑的水稻抽穗期定向改良及广亲和材料创建[D]: [博士学位论文]. 武汉: 华中农业大学, 2017.
[22]  Bhaya, D., Davison, M. and Barrangou, R. (2011) CRISPR-Cas Systems in Bacteria and Archaea: Versatile Small RNAs for Adaptive Defense and Regulation. Annual Review of Genetics, 45, 273-297.
https://doi.org/10.1146/annurev-genet-110410-132430
[23]  Liu, D., Hu, R., Palla, K.J., Tuskan, G.A. and Yang, X. (2016) Advances and Perspectives on the Use of CRISPR/Cas9 Systems in Plant Genomics Research. Current Opinion in Plant Biology, 30, 70-77.
https://doi.org/10.1016/j.pbi.2016.01.007
[24]  Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A. and Charpentier, E. (2012) A Programmable Dual-RNA- Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science, 337, 816-821.
https://doi.org/10.1126/science.1225829
[25]  Deltcheva, E., Chylinski, K., Sharma, C.M., Gonzales, K., Chao, Y., Pirzada, Z.A., Eckert, M.R., Vogel, J. and Charpentier, E. (2011). CRISPR RNA Maturation by Trans-Encoded Small RNA and Host Factor RNase III. Nature, 471, 602-607.
https://doi.org/10.1038/nature09886
[26]  Barnes, D.E. (2001) Non-Homologous End Joining as a Mechanism of DNA Repair. Current Biology, 11, R455-R457.
https://doi.org/10.1016/S0960-9822(01)00279-2
[27]  Lieber M.R. (2010) The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway. Annual Review of Biochemistry, 79, 181-211.
https://doi.org/10.1146/annurev.biochem.052308.093131
[28]  van den Bosch, M., Lohman, P.H. and Pastink, A. (2002) DNA Double-Strand Break Repair by Homologous Recombination. Biological Chemistry, 383, 873-892.
https://doi.org/10.1515/BC.2002.095
[29]  Wyman, C. and Kanaar, R. (2006) DNA Double-Strand Break Repair: All’s Well That Ends Well. Annual Review of Genetics, 40, 363-383.
https://doi.org/10.1146/annurev.genet.40.110405.090451
[30]  Wen, X., Sun, L., Chen, Y., Xue, P., Yang, Q., Wang, B., Yu, N., Cao, Y., Zhang, Y., Gong, K., Wu, W., Chen, D., Cao, L., Cheng, S., Zhang, Y. and Zhan, X. (2020) Rice Dwarf and Low Tillering 10 (OsDLT10) Regulates Tiller Number by Monitoring Auxin Homeostasis. Plant Science, 297, Article ID: 110502.
https://doi.org/10.1016/j.plantsci.2020.110502
[31]  Wang, B., Fang, R., Chen, F., Han, J., Liu, Y.-G., Chen, L. and Zhu, Q. (2020) A Novel Ccch-Type Zinc Finger Protein Saw1 Activates OsGA20ox3 to Regulate Gibberellin Homeostasis and Anther Development in Rice. Journal of Integrative Plant Biology, 62, 1594-1606.
https://doi.org/10.1111/jipb.12924
[32]  Svitashev, S., Schwartz, C., Lenderts, B., Young, J.K. and Mark Cigan, A. (2016) Genome Editing in Maize Directed by CRISPR-Cas9 Ribonucleoprotein Complexes. Nature Communications, 7, Article No. 13274.
https://doi.org/10.1038/ncomms13274
[33]  蒋佳芮, 许力, 李锐, 张建铎, 向海英, 高茜, 宋春满, 邓乐乐, 杨文武, 杨光宇, 张承明, 李雪梅, 曾婉俐. 烟草单倍体基因编辑系统的建立[J]. 中国烟草学报, 2020, 26(5): 66-71.
[34]  Lawrenson, T., Shorinola, O., Stacey, N., Li, C., ?stergaard, L., Patron, N., Uauy, C. and Harwood, W. (2015) Induction of Targeted, Heritable Mutations in Barley and Brassica oleracea Using RNA-Guided Cas9 Nuc-lease. Genome Biology, 16, Article No. 258.
https://doi.org/10.1186/s13059-015-0826-7
[35]  Liang, Z., Zhang, K., Chen, K. and Gao, C. (2014) Targeted Mutagenesis in Zea mays Using TALENs and the CRISPR/Cas System. Journal of Genetics and Genomics, 41, 63-68.
https://doi.org/10.1016/j.jgg.2013.12.001
[36]  Zhang, T., Zheng, Q., Yi, X., An, H., Zhao, Y., Ma, S. and Zhou, G. (2018). Establishing RNA Virus Resistance in Plants by Harnessing CRISPR Immune System. Plant Biotechnology Journal, 16, 1415-1423.
https://doi.org/10.1111/pbi.12881
[37]  Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., Liu, Y.G. and Zhao, K. (2016) Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922. PLoS ONE, 11, e0154027.
https://doi.org/10.1371/journal.pone.0154027
[38]  Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C. and Qiu, J.L. (2014) Simultaneous Editing of Three Homoeoalleles in Hexaploid Bread Wheat Confers Heritable Resistance to Powdery Mildew. Nature Biotechnology, 32, 947-951.
https://doi.org/10.1038/nbt.2969
[39]  Sun, Y., Jiao, G., Liu, Z., Zhang, X., Li, J., Guo, X., Du, W., Du, J., Francis, F., Zhao, Y. and Xia, L. (2017) Generation of High-Amylose Rice through CRISPR/Cas9-Mediated Targeted Mutagenesis of Starch Branching Enzymes. Frontiers in Plant Science, 8, Article No. 298.
https://doi.org/10.3389/fpls.2017.00298
[40]  Li, J., Meng, X., Zong, Y., Chen, K., Zhang, H., Liu, J., Li, J. and Gao, C. (2016) Gene Replacements and Insertions in Rice by Intron Targeting Using CRISPR-Cas9. Nature Plants, 2, Article No. 16139.
https://doi.org/10.1038/nplants.2016.139
[41]  Shi, J., Gao, H., Wang, H., Lafitte, H.R., Archibald, R.L., Yang, M., Hakimi, S.M., Mo, H. and Habben, J.E. (2017) ARGOS8 Variants Generated by CRISPR-Cas9 Improve Maize Grain Yield under Field Drought Stress Conditions. Plant Biotechnology Journal, 15, 207-216.
https://doi.org/10.1111/pbi.12603
[42]  Wang, C., Wang, G., Gao, Y., Lu, G., Habben, J.E., Mao, G., Chen, G., Wang, J., Yang, F., Zhao, X., Zhang, J., Mo, H., Qu, P., Liu, J. and Greene, T.W. (2020) A Cytokinin-Activation Enzyme-Like Gene Improves Grain Yield under Various Field Conditions in Rice. Plant Molecular Biology, 102, 373-388.
https://doi.org/10.1007/s11103-019-00952-5
[43]  Li, J.F., Norville, J.E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G.M. and Sheen, J. (2013) Multiplex and Homologous Recombination-Mediated Genome Editing in Arabidopsis and Nicotiana benthamiana Using Guide RNA and Cas9. Nature Biotechnology, 31, 688-691.
https://doi.org/10.1038/nbt.2654
[44]  Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., Wan, J., Gu, H. and Qu, L.J. (2013) Targeted Mutagenesis in Rice Using CRISPR-Cas System. Cell Research, 23, 1233-1236.
https://doi.org/10.1038/cr.2013.123
[45]  Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J.J., Qiu, J.L. and Gao, C. (2013) Targeted Genome Modification of Crop Plants Using a CRISPR-Cas System. Nature Biotechnology, 31, 686-688.
https://doi.org/10.1038/nbt.2650
[46]  Char, S.N., Neelakandan, A.K., Nahampun, H., Frame, B., Main, M., Spalding, M.H., Becraft, P.W., Meyers, B.C., Walbot, V., Wang, K. and Yang, B. (2017) An Agrobacterium-Delivered CRISPR/Cas9 System for High-Frequency Targeted Mutagenesis in Maize. Plant Biotechnology Journal, 15, 257-268.
https://doi.org/10.1111/pbi.12611
[47]  Tycko, J., Myer, V.E. and Hsu, P.D. (2016) Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity. Molecular Cell, 63, 355-370.
https://doi.org/10.1016/j.molcel.2016.07.004
[48]  Liang, Z., Chen, K., Li, T., Zhang, Y., Wang, Y., Zhao, Q., Liu, J., Zhang, H., Liu, C., Ran, Y. and Gao, C. (2017) Efficient DNA-Free Genome Editing of Bread Wheat Using CRISPR/Cas9 Ribonucleoprotein Complexes. Nature Communications, 8, Article No. 14261.
https://doi.org/10.1038/ncomms14261
[49]  Hahn, F., and Nekrasov, V. (2019) CRISPR/Cas Precision: Do We Need to Worry about Off-Targeting in Plants? Plant Cell Reports, 38, 437-441.
https://doi.org/10.1007/s00299-018-2355-9
[50]  王福军, 赵开军. 基因组编辑技术应用于作物遗传改良的进展与挑战[J]. 中国农业科学, 2018, 51(1): 1-16
[51]  李树磊, 郑红艳, 王磊. 基因编辑技术在作物育种中的应用与展望[J]. 生物技术通报, 2020, 36(11): 209-221.
[52]  Lin, C.S., Hsu, C.T., Yang, L.H., Lee, L.Y., Fu, J.Y., Cheng, Q.W., Wu, F.H., Hsiao, H.C., Zhang, Y., Zhang, R., Chang, W.J., Yu, C.T., Wang, W., Liao, L.J., Gelvin, S.B. and Shih, M.C. (2018) Application of Protoplast Technology to CRISPR/Cas9 Mutagenesis: From Single-Cell Mutation Detection to Mutant Plant Regeneration. Plant Biotechnology Journal, 16, 1295-1310.
https://doi.org/10.1111/pbi.12870
[53]  Gaj, T., Gersbach, C.A. and Barbas III, C.F. (2013) ZFN, TALEN, and CRISPR/Cas-Based Methods for Genome Engineering. Trends in Biotechnology, 31, 397-405.
https://doi.org/10.1016/j.tibtech.2013.04.004
[54]  Gaj, T., Mercer, A.C., Sirk, S.J., Smith, H.L. and Barbas III, C.F. (2013) A Comprehensive Approach to Zinc-Finger Recombinase Customization Enables Genomic Targeting in Human Cells. Nucleic Acids Research, 41, 3937-3946.
https://doi.org/10.1093/nar/gkt071
[55]  Beerli, R.R. and Barbas III, C.F. (2002) Engineering Polydactyl Zinc-Finger Transcription Factors. Nature Biotechnology, 20, 135-141.
https://doi.org/10.1038/nbt0202-135
[56]  肖义军, 黄艳萍. 基因编辑技术在作物育种上的应用研究进展[J]. 生物学教学, 2019, 44(11): 2-4.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133