|
Pure Mathematics 2021
不含相邻短圈的平面图的点荫度问题
|
Abstract:
[1] | Yang, J, McAuley, J. and Leskovec, J. (2013) Community Detection in Networks with Node Attributes. 2013 IEEE 13th International Conference on Data Mining, Dallas, TX, 7-10 December 2013, 1151-1156. https://doi.org/10.1109/ICDM.2013.167 |
[2] | Bi, Y.J., Wu, W.L., Zhu, Y.Q., Fan, L.D. and Wang, A.L. (2014) A Nature-Inspired Influence Propagation Model for the Community Expansion Problem. Journal of Combinatorial Optimization, 28, 513-528. https://doi.org/10.1007/s10878-013-9686-9 |
[3] | Lancichinetti, A. and Fortunato, S. (2009) Community Detection Algorithms: A Comparative Analysis. Physical Review E, 80, Article ID: 056117. https://doi.org/10.1103/PhysRevE.80.056117 |
[4] | Wagenseller, P., Wang, F. and Wu, W.L. (2018) Size Matters: A Comparative Analysis of Community Detection Algorithms. IEEE Transactions on Computational Social Systems, 5, 951-960. https://doi.org/10.1109/TCSS.2018.2875626 |
[5] | Chen, G. and Wang, Y. (2011) Community Detection in Complex Networks Using Extremal Optimization Modularity Density. Journal of Huazhong University of Science and Technology (Natural Science Edition), 39, 82-85. |
[6] | Tong, G.M., Cui, L., Wu, W.L., Liu, C. and Du, D.Z. (2016) Terminal-Set-Enhanced Community Detection in Social Networks. The 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, 10-14 April 2016, 1-9. https://doi.org/10.1109/INFOCOM.2016.7524473 |
[7] | Lu, Z.X., Wu, W.L., Chen, W.D., Zhong, J.F., Bi, Y.J. and Gao, Z. (2013) The Maximum Community Partition Problem in Networks. Discrete Mathematics, Algorithms and Applications, 5, Article ID: 1350031. https://doi.org/10.1142/S1793830913500316 |
[8] | Chartrand, G., Kronk, H.V. and Wall, C.E. (1968) The Point-Arboricity of a Graph. Israel Journal of Mathematics, 6, 169-175. https://doi.org/10.1007/BF02760181 |
[9] | Chartrand, G. and Kronk, H.V. (1969) The Point-Arboricity of Planar Graphs. Journal of the London Mathematical Society, 44, 612-616. https://doi.org/10.1112/jlms/s1-44.1.612 |
[10] | Fortunato, S. and Hric, D. (2016) Community Detection in Networks: A User Guide. Physics Reports, 659, 1-44. https://doi.org/10.1016/j.physrep.2016.09.002 |
[11] | Wang, L., Wang, J., Bi, Y.J., Wu, W.L., Xu, W. and Lian, B. (2014) Noise-Tolerance Com- munity Detection and Evolution in Dynamic Social Networks. Journal of Combinatorial Optimization, 28, 600-612. https://doi.org/10.1007/s10878-014-9719-z |
[12] | Raspaud, A. and Wang, W. (2008) On the Vertex-Arboricity of Planar Graphs. European Journal of Combinatorics, 29, 1064-1075. https://doi.org/10.1016/j.ejc.2007.11.022 |
[13] | Wang, W. and Lin, K.W. (2002) Choosability and Edge Choosability of Planar Graphs without Five Cycles. Applied Mathematics Letters, 15, 561-565.
https://doi.org/10.1016/S0893-9659(02)80007-6 |
[14] | Fijav?z, G., Juvan, M., Mohar, B. and S?krekovski, R. (2002) Planar Graphs without Cycles of Specific Lengths. European Journal of Combinatorics, 23, 377-388. https://doi.org/10.1006/eujc.2002.0570 |
[15] | Huang, D., Shui, W.C. and Wang, W. (2012) On the Vertex-Arboricity of Planar Graphs without 7-Cycles. Discrete Mathematics, 312, 2304-2315. https://doi.org/10.1016/j.disc.2012.03.035 |
[16] | Chen, M., Raspaud, A. and Wang, W. (2012) Vertex-Arboricity of Planar Graphs without Intersecting Triangles. European Journal of Combinatorics, 33, 905-923. https://doi.org/10.1016/j.ejc.2011.09.017 |
[17] | Huang, D. and Wang, W.F. (2013) Vertex-Arboricity of Planar Graphs without Chordal 6- Cycles. International Journal of Computer Mathematics, 90, 258-272. https://doi.org/10.1080/00207160.2012.727989 |
[18] | Cai, H., Wu, J. and Sun, L. (2018) Vertex Arboricity of Planar Graphs without Intersecting 5-Cycles. Journal of Combinatorial Optimization, 35, 365-372. https://doi.org/10.1007/s10878-017-0168-3 |
[19] | Chen, H.L., Teng, W.S., Wang, H.J. and Gao, H.W. (2018) Vertex Arboricity of Planar Graphs without 5-Cycles Intersecting with 6-Cycles. Scholars Journal of Physics, Mathematics and Statistics, 5, 322-327. |
[20] | Teng, W.S., Wang, H.J., Chen, H.L. and Liu, B. (2019) Social Structure Decomposition with Security Issue. IEEE Access, 7, 82785-82793. https://doi.org/10.1109/ACCESS.2019.2924052 |
[21] | Choi, I. and Zhang, H. (2014) Vertex Arboricity of Toroidal Graphs with a Forbidden Cycle.
Discrete Mathematics, 333, 101-105. https://doi.org/10.1016/j.disc.2014.06.011 |
[22] | Tao, F.Y. and Lin, W.S. (2016) On the Equitable Vertex Arboricity of Graphs. International Journal of Computer Mathematics, 93, 844-853. https://doi.org/10.1080/00207160.2015.1023794 |
[23] | Yang, A.F. and Yuan, J. (2007) On the Vertex Arboricity of Planar Graphs of Diameter Two.
Discrete Mathematics, 307, 2438-2447. https://doi.org/10.1016/j.disc.2006.10.017 |
[24] | Guo, Z., Zhao, H. and Mao, Y. (2015) On the Equitable Vertex Arboricity of Complete Tripartite Graphs. Discrete Mathematics Algorithms and Applications, 7, 225-243. https://doi.org/10.1142/S1793830915500561 |
[25] | Cui, X.Y., Teng, W.S., Liu, X. and Wang, H.J. (2020) A Note of Vertex Arboricity of Planar Graphs without 4-Cycles Intersecting with 6-Cycles. Theoretical Computer Science, 836, 53-58. https://doi.org/10.1016/j.tcs.2020.06.009 |