%0 Journal Article
%T 不含相邻短圈的平面图的点荫度问题
Vertex Arboricity Problem of Planar Graphs without Adjacent Short Cycles
%A 刘星
%A 王慧娟
%J Pure Mathematics
%P 1585-1600
%@ 2160-7605
%D 2021
%I Hans Publishing
%R 10.12677/PM.2021.118176
%X
在社团网络的研究中,社团结构划分一直是一个有价值的研究课题。 出于安全考虑,对一个新的社团结构划分问题进行研究,它可以在图论中转化为最小化问题。 图G的点荫度是对G的点集进行顶点着色,使得每个颜色类的导出子图是G 的森林的最小颜色数,一般用符号va(G)表示。 一般地,对于任意平面图 G ,va(G) ≤ 3,且对任意非空图 G,va(G) ≥ 1 成立。 显然,va(G) = 1当且仅当图G 是一个无圈图。 对于某些特殊情况,如果图G是一个不含3-圈的平面图,va(G) ≤ 2。Raspaud 和Wang 等人证明了如果图G是一个不含4-圈或不含5-圈的平面图,则va(G) ≤ 2。 此外,Huang, Shui 和Wang 等人证明了如果图G是一个不含7-圈的平面图,则va(G) ≤ 2。 在本文中,我们证明了如果图G是一个不含相邻的3-圈和4-圈的平面图,或者不含相邻的4-圈和5-圈的平 面图,则va(G) ≤ 2。
In the research of social networks, social structure decomposition has always been a valuable research topic. For security reasons, we study a new social structure decomposition problem, which can be decomposed into a problem of minimization in graph theory. The vertex arboricity of a graph G, denoted by va(G), is the minimum number of subsets such that the vertices of G can be colored and every color class induces an acyclic graph such as a forest of G. Normally, va(G) ≤ 3 for every planar graph G and va(G) ≥ 1 for every nonempty graph G. There is no doubt that va(G) = 1 if and only if G is an acyclic graph. For some special cases, it is known that va(G) ≤ 2 if G is a planar graph without 3-cycles. Recently, Raspaud and Wang et al. proved that va(G) ≤ 2 if G is a planar graph without 4-cycles or without 5-cycles. In addition, Huang, Shiu, and Wang showed that if G is a planar graph without 7-cycles, then va(G) ≤ 2. In this paper, we prove that if G is a planar graph without adjacent 3-cycles and 5-cycles, or without adjacent 4-cycles and 5-cycles, then va(G) ≤ 2.
%K 平面图,点荫度,相邻,圈
Planar Graph
%K Vertex Arboricity
%K Adjacent
%K Cycle
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=44841