|
一种基于深度强化学习的资源调度方法
|
Abstract:
[1] | 凤凰网科技. 字节跳动在美租用数据中心: 数十万台服务器, 能耗达53兆瓦[EB/OL].
https://tech.ifeng.com/c/80zDZm54HDc, 2020-10-30. |
[2] | 叶宇飞. 基于深度强化学习的数据中心资源算法调度研究[D]: [硕士学位论文]. 成都: 电子科技大学, 2019. |
[3] | Ferguson, A.D., Bodik, P., Kandula, S., et al. (2012) Jockey: Guaranteed Job Latency in Data Parallel Clusters. Proceedings of the 7th ACM European Conference on Com-puter Systems, Bern, 10-13 April 2012, 99-112.
https://doi.org/10.1145/2168836.2168847 |
[4] | Martinez, J.F. and Ipek, E. (2009) Dynamic Multicore Resource Management: A Machine Learning Approach. IEEE Micro, 29, 8-17. https://doi.org/10.1109/MM.2009.77 |
[5] | Mao, H., Alizadeh, M., Menache, I., et al. (2016) Resource Management with Deep Reinforcement Learning. Proceedings of the 15th ACM Workshop on Hot Topics in Networks, Atlanta, GA, 9-10 November 2016, 50-56.
https://doi.org/10.1145/3005745.3005750 |
[6] | Mao, H., Schwarzkopf, M., Venkatakrishnan, S.B., et al. (2019) Learning Scheduling Algorithms for Data Processing Clusters. Proceedings of the ACM Special Interest Group on Data Communication, Beijing, 19-23 August 2019, 270-288. https://doi.org/10.1145/3341302.3342080 |
[7] | LeCun, Y., Bottou, L., Bengio, Y., et al. (1998) Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86, 2278-2324. https://doi.org/10.1109/5.726791 |
[8] | Liu, N., Li, Z., Xu, J., et al. (2017) A Hierarchical Framework of Cloud Resource Allocation and Power Management Using Deep Reinforcement Learning. 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, 5-8 June 2017, 372-382. https://doi.org/10.1109/ICDCS.2017.123 |
[9] | Mnih, V., Badia, A.P., Mirza, M., et al. (2016) Asynchronous Methods for Deep Reinforcement Learning. International Conference on Machine Learning, PMLR, New York, 20-22 Jun 2016, 1928-1937. |
[10] | Schulman, J., Wolski, F., Dhariwal, P., et al. (2017) Proximal Policy Optimization Algo-rithms.
arXiv:1707.06347 [cs.LG] |
[11] | Ross, S., Gordon, G. and Bagnell, D. (2011) A Reduction of Imitation Learning and Structured Prediction To No-Regret Online Learning. Proceedings of the Fourteenth International Conference on Artifi-cial Intelligence and Statistics. JMLR Workshop and Conference Proceedings, Fort Lauderdale, 11-13 April 2011, 627-635. |
[12] | Grandl, R., Ananthanarayanan, G., Kandula, S., et al. (2014) Multi-Resource Packing for Cluster Sched-ulers. ACM SIGCOMM Computer Communication Review, 44, 455-466. https://doi.org/10.1145/2740070.2626334 |