%0 Journal Article %T 一种基于深度强化学习的资源调度方法
A Resource Scheduling Method Based on Deep Reinforcement Learning %A 赵飞鸿 %A 孙立峰 %J Computer Science and Application %P 2008-2018 %@ 2161-881X %D 2021 %I Hans Publishing %R 10.12677/CSA.2021.117205 %X
启发式调度算法作为云数据中心资源调度的常用方法能够给出一种可行的资源调度策略,但针对特定集群环境设计合适的启发式算法需要较专业的先验知识,而使用通用的启发式方法会对集群资源造成极大浪费。对Kubernetes集群资源调度过程进行建模,设计基于深度强化学习的资源调度方法,对于不同的集群环境和优化目标,使用学习的方法从历史数据中学习得到相应的调度策略,优化集群资源利用情况。实验结果表明,使用该方法比现有启发式方法在任务带权周转时间上平均减少7.5%,最高减少13.5%。
As a common method of resource scheduling in cloud data centers, heuristic scheduling algorithm can give a feasible resource scheduling strategy. However, designing a suitable heuristic algorithm for a specific cluster environment requires professional prior knowledge, or using general heuristic methods will cause a great waste of cluster resources. We design a resource scheduling method on Kubernetes system based on deep reinforcement learning. For different cluster environments and optimization goals, using learning methods to obtain corresponding scheduling strategies from historical data can optimize cluster resource utilization. Experimental results show that the use of this method reduces the slowdown of tasks by an average of 7.5% and the highest reduction of 13.5% compared with the existing heuristic methods.
%K 云计算,资源调度,深度强化学习
Cloud Computing %K Resource Scheduling %K Deep Reinforcement Learning %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=44187