全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非齐次Burgers方程的黎曼初值扰动问题解的渐近稳定性
Asymptotic Stability of Shock Waves and Rarefaction Waves under Periodic Perturbations for Inhomogeneous Burgers Equation

DOI: 10.12677/PM.2021.117157, PP. 1400-1415

Keywords: 非齐次Burgers方程,激波,稀疏波,周期扰动,广义特征线
Inhomogeneous Burgers Equation
, Shock Waves, Rarefaction Waves, Periodic Perturbations, Generalized Characteristics

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要研究非齐次 Burgers 方程的柯西问题,初值为黎曼初值周期扰动时,基本波结构的渐近 稳定性。我们发现激波解扰动后,在有限时间 T 后仍为激波解,在任意时刻 t > T ,它左右状态仍 为周期函数,且在 L 范数的意义下衰减至0。 特别地,扰动后的激波在原激波两侧摆动,扰动后 的稀疏波解在 L 范数的意义下衰减至0。
In this paper we study large time behaviors toward shock waves and rarefaction waves under periodic perturbations for inhomogeneous Burgers equation. We show that for shock waves, after a finite time, the perturbed shock actually consists of two periodic functions contacting each other at a shock, and this shock curve oscillates on both sides of the background shock curve. Both of perturbed shock waves and perturbed rarefaction waves tend to zero in the L norm.

References

[1]  Kruzkov, S.N. (1970) First Order Quasilinear Equations in Several Independent Variables. Matematicheskii Sbornik (N S), 10, 217.
https://doi.org/10.1070/SM1970v010n02ABEH002156
[2]  Hopf, E. (1950) The Partial Differential Equation ut + uux = xx. Communications on Pure and Applied Mathematics, 3, 201-230.
https://doi.org/10.1002/cpa.3160030302
[3]  Lax, P.D. (1957) Hyperbolic Systems of Conservation Laws II. Communications on Pure and Applied Mathematics, 10, 537-566.
https://doi.org/10.1002/cpa.3160100406
[4]  Glimm, J. and Lax, P.D. (1970) Decay of Solutions of Systems of Nonlinear Hyperbolic Con- servation Laws, Vol. 101. American Mathematical Society.
[5]  Xin, Z.P., Qian, Y. and Yuan, Y. (2019) Asymptotic Stability of Shock Waves and Rarefaction Waves under Periodic Perturbations for 1?d Convex Scalar Conservation Laws. SIAM Journal on Mathematical Analysis, 51, 2971-2994.
https://doi.org/10.1137/18M1192883
[6]  Yuan, Q. and Yuan, Y. (2020) On Riemann Solutions under Different Initial Periodic Per- turbations at Two Infinities for 1-d Scalar Convex Conservation Laws. Journal of Differential Equations, 268, 5140-5155.
https://doi.org/10.1016/j.jde.2019.11.008
[7]  Lyberopoulos, A.N. (1990) Asymptotic Oscillations of Solutions of Scalar Conservation Laws with Convexity under the Action of a Linear Excitation. Quarterly of Applied Mathematics, 48, 755-765.
https://doi.org/10.1090/qam/1079918
[8]  Fan, H. and Jack, K.H. (1993) Large-Time Behavior in Inhomogeneous Conservation Laws. Archive for Rational Mechanics and Analysis, 125, 201-216.
https://doi.org/10.1007/BF00383219
[9]  匡杰, 王泽军. 非齐次Burgers 方程周期解的大时间行为[J]. 数学物理学报, 2015, 35(1): 1-14.
[10]  Mascia, C. and Sinestrari, C. (1997) The Perturbed Riemann Problem for a Balance Law. Advances in Difference Equations, 2, 779-810.
[11]  Dafermos, C.M. (2005) Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin.
https://doi.org/10.1007/3-540-29089-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133