%0 Journal Article
%T 非齐次Burgers方程的黎曼初值扰动问题解的渐近稳定性
Asymptotic Stability of Shock Waves and Rarefaction Waves under Periodic Perturbations for Inhomogeneous Burgers Equation
%A 张兆祥
%A 李悦
%J Pure Mathematics
%P 1400-1415
%@ 2160-7605
%D 2021
%I Hans Publishing
%R 10.12677/PM.2021.117157
%X
本文主要研究非齐次 Burgers 方程的柯西问题,初值为黎曼初值周期扰动时,基本波结构的渐近 稳定性。我们发现激波解扰动后,在有限时间 T 后仍为激波解,在任意时刻 t > T ,它左右状态仍 为周期函数,且在 L∞ 范数的意义下衰减至0。 特别地,扰动后的激波在原激波两侧摆动,扰动后 的稀疏波解在 L∞ 范数的意义下衰减至0。
In this paper we study large time behaviors toward shock waves and rarefaction waves under periodic perturbations for inhomogeneous Burgers equation. We show that for shock waves, after a finite time, the perturbed shock actually consists of two periodic functions contacting each other at a shock, and this shock curve oscillates on both sides of the background shock curve. Both of perturbed shock waves and perturbed rarefaction waves tend to zero in the L∞ norm.
%K 非齐次Burgers方程,激波,稀疏波,周期扰动,广义特征线
Inhomogeneous Burgers Equation
%K Shock Waves
%K Rarefaction Waves
%K Periodic Perturbations
%K Generalized Characteristics
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=44035