As the ultimate building blocks of the universe, the limit structureless quark u∞ and its anti-quark are considered at the infinite sublayer level of the quark model. Then CP is violated in the doublet of u∞ and u∞CP quarks to account for the asymmetry of the number of particles and anti-particles. This CP violation is explained by a SU(2) noncommutative geometry. The second, third and fourth generation quarks are considered only as the excited states of the first generation u∞ and u∞CP quarks. The fourth generation quarks are derived from both CPT transformation and the SU(2)L×U(1) gauge theory. The dark matter, quarks, leptons, gauge bosons and Higgs bosons are composed of only the u∞ and u∞CP quarks and the cosmological constant in Einstein’s field equation is also derived from the Higgs potential. Thus, the limit particle u∞ and its anti-particle u∞CP are the ultimate particles of the universe and produced thermally in the hot early universe of the Big Bang.
References
[1]
Sekine, M. (1985) The Structure of the Nucleon. International Journal of Theoretical Physics, 24, 701-705. https://doi.org/10.1007/BF00670877
[2]
Griffiths, D. (2008) Introduction to Elementary Particles. Wiley-VCH, Weinheim, Germany.
[3]
Sugita, K., Okamoto, Y. and Sekine, M. (2008) Dark Matter Candidate Particles, CP Violation and Higgs Bosons. International Journal of Theoretical Physics, 47, 2875-2881. https://doi.org/10.1007/s10773-008-9720-3
[4]
Sugita, K., Okamoto, Y. and Sekine, M. (2006) CP Violation via a Noncommutative SU(2)-Bundle Internal Structure. Physics Essays, 19, 55-58. https://doi.org/10.4006/1.3025780
[5]
Sugita, K., Okamoto, Y. and Sekine, M. (2021) Differential Geometry for Theoretical Physics: From Commutative Geometry to Noncommutative Geometry. 5th Edition, Morikita Publishing Co. Ltd., Tokyo, 314-324. (in Japanese)
[6]
Charlier, C. V. L. (1908) Eie Eine Unendliche Welt Augebaut Sein Kann. Arkiv Ror Mathematik Astronomi Och Fysik, vol, 15-40.
[7]
Jaki, S.L (1969) The Paradox of Olbers’ Paradox: A Case History of Scientific Thought. Herber and Herber, New York.
[8]
Alfven, H. (1984) Cosmology: Myth or Science? Journal of Astrophysics and Astronomy, 5, 79-98. https://doi.org/10.1007/BF02714974
[9]
Sekine, M. (2012) The Cantor Set Constructed from an Infinite Number of Quarks Constituting the Nucleon and the Dark Matter. Applied Physics Research, 4, 68-72. https://doi.org/10.5539/apr.v4n4p68
[10]
Sugita, K., Okamoto, Y. and Sekine, M. (2011) Remarks on a Cosmological Constant by Spontaneous Symmetry Breaking. Physics Essays, 24, 136-138. https://doi.org/10.4006/1.3552879
[11]
Okamoto, Y., Sugita, K. and Sekine, M. (1999) Weyl Transformation in Fermi Systems. Annalen der Physik, 8, 829-836. https://doi.org/10.1002/(SICI)1521-3889(199912)8:10<829::AID-ANDP829>3.0.CO;2-L
[12]
Sugita, K., Okamoto, Y. and Sekine, M. (1998) Path Integrals and Quantum Electrodynamics. Morikita Publishing Co. Ltd., Tokyo, 193-216. (in Japanese)
Corda, C. (2014) Bohr-Like Model for Black Holes. AIP Conference Proceedings, 1648, Article ID: 020004.
[15]
Gorishny, S.G., Kataev, A.L. and Larin, S.A. (1991) The O (αS3) Corrections to σtot (e + e- → hadrons) and Γ (τ- → ντ + hadrons) in QCD. Physics Letters, 259, 144-150. https://doi.org/10.1016/0370-2693(91)90149-K
[16]
Sekine, M. (2021) Experimental Evidence of Non-Baryonic Dark Matter IH High Energy Physics. Journal of High Energy Physics, Gravitation and Cosmology, 7, 873-879. https://doi.org/10.4236/jhepgc.2021.73049
[17]
Adeva, B., et al. (1986) Study of Hadron and Inclusive Muon Production from Annihilation at 39.79 ≤ √s ≤ 46.78 GeV. Physical Review, 34, 681-691.
[18]
The CUSB Collaboration, Rice, E., et al. (1982) Search for Structure in σ (e+e- →hadrons) between √s =10.34 and 11.6 GeV. Physical Review Letters, 48, 906-909.
[19]
The CELLO Collaboration, Behrend, H.J., et al. (1982) Measurement of the Reaction e+e- →μ+μ- for 14 ≤ √s ≤ 36.4 GeV . Zeitschrift für Physik C, 14, 283-288.
[20]
The PLUTO Collaboration, Berger, C., et al. (1983) Measurement of the Muon Pair Asymmetry in e+e- Annihilation at √s
= 34.7 GeV . Zeitschrift für Physik C, 21, 53-57. https://doi.org/10.1007/BF01648775
[21]
The CLEO Collaboration, Giles, R. et al. (1984) Total Cross Section for Electron-Positron Annihilation into Hadron Final States in the Upsilon Energy Region Physical. Review, D29, 1285-1549.
[22]
Adeva, B., et al. (1984) A Symmetry of Experimental Results from Mark J: High Energy e+e- Collisions at PETRA. Physics Report, 109, 131-226. https://doi.org/10.1016/0370-1573(84)90124-8
[23]
The TASSO Collaboration, Althoff, M., et al. (1984) An Improved Measurement of Electroweak Coupling from e+e- and e+e- →μ+μ-. Zeitschrift für Physik C, 22, 13-21.
[24]
The JADE Collaboration, Barte, W., et al. (1985) New Results on e+e- →μ+μ- from the JADE Detector at PETRA. Zeitschrift für Physik C, 14, 53-57.
[25]
The MD-1 Collaboration, Blinov, A.E., et al. (1996) The Measurement of R in e+ e- Annihilation at Center-of-Mass Energies between 7.25 and 10.34 GeV. Zeitschrift für Physik C, 70, 31-37. https://doi.org/10.1007/s002880050077
[26]
Okamoto, Y., Sugita, K. and Sekine, M. (1994) Possible Removal of Preon self-Energy Divergences in CP Violation Model. IL. Nuovo Cimento, 107A, 1363-1367 https://doi.org/10.1007/BF02775775
[27]
Sugita, K., Okamoto, Y. and Sekine, M. (1994) CP Violation in Preon Model. IL Nuovo Cimento, 107A, 1793-1795. https://doi.org/10.1007/BF02780713
[28]
Sugita, K., Okamoto, Y. and Sekine, M. (1994) CP Violation in β Decay. IL Nuovo Cimento, 107A, 2875-2878. https://doi.org/10.1007/BF02730965
[29]
Okamoto, Y., Sugita, K. and Sekine, M. (1995) CP Violation in β decay-Ⅱ. IL Nuovo Cimento, 108A, 1153-1156. https://doi.org/10.1007/BF02790322
[30]
Sekine, M., Sugita, K. and Okamoto, Y. (1997) Anomaly Freedom in CP Violation Preon Model. International Journal of Theoretical Physics, 36, 1409-1412. https://doi.org/10.1007/BF02435934
[31]
Boesgaard, A. and Steigman, G. (1985) Big Bang Nucleosynthesis: Theories and Observations. Annual Review of Astronomy and Astrophysics, 23, 319-378. https://doi.org/10.1146/annurev.aa.23.090185.001535
[32]
Sugita, K., Okamoto, Y. and Sekine, M. (1993) Four Families in Preon Model. IL Nuovo Cimento, 106A, 771-775. https://doi.org/10.1007/BF02771492
[33]
Einstein, A. (1917) Kosmologische Betrachtungen Zur Allgemeinen Relativitßtstheorie. Sitzungsberichte der Preußischen Akademie der Wissenschaften, 67, 142-152.
[34]
Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282. https://doi.org/10.1142/S0218271809015904
[35]
Netchitailo, V. (2020) Hypersphere World-Universe Model: Basic Ideas. Journal of High Energy Physics, Gravitation and Cosmology, 6, 710-752. https://doi.org/10.4236/jhepgc.2020.64049
[36]
Netchitailo, V. (2019) Dark Matter Cosmology and Astrophysics. Journal of High Energy Physics, Gravitation and Cosmology, 5, 999-1050. https://doi.org/10.4236/jhepgc.2019.54056
[37]
Musha, T and Sekine, M. (1976) Induced Emission of Gravitational Waves. Lettere al Nuovo Cimento, 16, 14-16. https://doi.org/10.1007/BF02719663
[38]
Shandarin, S. F. and Zeldovich, Y.B. (1989) The Large-Scale Structure of the Universe: Turbulence, Intermittency, Structures in a Self-Gravitating Medium. Reviews of Modern Physics, 61,185-220. https://doi.org/10.1103/RevModPhys.61.185